
POPQC: Parallel Optimization forQuantum Circuits
Pengyu Liu

pengyuliu@cmu.edu

Carnegie Mellon University

Pittsburgh, PA, USA

Jatin Arora
∗

jatina29@gmail.com

Carnegie Mellon University

Pittsburgh, PA, USA

Mingkuan Xu

mingkuan@cmu.edu

Carnegie Mellon University

Pittsburgh, PA, USA

Umut A. Acar

umut@cmu.edu

Carnegie Mellon University

Pittsburgh, PA, USA

Abstract

Optimization of quantum programs or circuits is a fundamental
problem in quantum computing and remains a major challenge.
State-of-the-art quantum circuit optimizers rely on heuristics and
typically require superlinear, and even exponential, time. Recent
work [8] proposed a new approach that pursues a weaker form
of optimality called local optimality. Parameterized by a natural
number Ω, local optimality insists that each and every Ω-segment
of the circuit is optimal with respect to an external optimizer, called
the oracle. Local optimization can be performed using only a linear
number of calls to the oracle but still incurs quadratic computational
overheads in addition to oracle calls. Perhaps most importantly, the
algorithm is sequential.

In this paper, we present a parallel algorithm for local optimiza-

tion of quantum circuits. To ensure efficiency, the algorithm op-
erates by keeping a set of fingers into the circuit and maintains
the invariant that a Ω-deep circuit needs to be optimized only if it
contains a finger. Operating in rounds, the algorithm selects a set
of fingers, optimizes in parallel the segments containing the fingers,
and updates the finger set to ensure the invariant. For constant Ω,
we prove that the algorithm requires 𝑂 (𝑛 lg 𝑛) work and 𝑂 (𝑟 lg 𝑛)
span, where 𝑛 is the circuit size and 𝑟 is the number of rounds. We
prove that the optimized circuit returned by the algorithm is locally
optimal in the sense that any Ω-segment of the circuit is optimal
with respect to the oracle.

To assess the algorithm’s effectiveness in practice, we implement
it in the Rust programming language and evaluate it by considering
a range of quantum benchmarks and several state-of-the-art opti-
mizers. The evaluation shows that the algorithm is work efficient
and scales well as the number of processors (cores) increases. On
our benchmarks, the algorithm outperforms existing optimizers,
which are all sequential, by as much as several orders of magnitude,
without degrading the quality. Our code is available on GitHub at
https://github.com/UmutAcarLab/popqc.

∗
Currently at Amazon Web Services. This work was completed while at Carnegie
Mellon University.

This work is licensed under Creative Commons Attribution International 4.0.
SPAA ’25, July 28-August 1, 2025, Portland, OR, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1258-6/25/07
https://doi.org/10.1145/3694906.3743325

CCS Concepts

• Theory of computation→ Parallel algorithms; • Hardware

→ Quantum computation.

Keywords

Quantum circuit optimization, parallel algorithms, quantum com-

putation, local optimization

ACM Reference Format:

Pengyu Liu, Jatin Arora, Mingkuan Xu, and Umut A. Acar. 2025. POPQC:

Parallel Optimization for Quantum Circuits. In 37th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA ’25), July 28–August 1,
2025, Portland, OR, USA. ACM, New York, NY, USA, 15 pages. https://doi.

org/10.1145/3694906.3743325

1 Introduction

Quantum computing is an emerging field at the intersection

of computer science, physics, and mathematics. By using quan-

tum bits or qubits that offer exponential advantage by operat-

ing in a superposition of states, quantum computers hold the

promise of major breakthroughs in numerous fields including quan-

tum simulation[10, 16], optimization[13, 43], cryptography[49],

and machine learning[12, 47]. Although quantum computer hard-

ware has made significant advances in recent years, including

superconducting[28], trapped ions[36, 37], and Rydberg atom

arrays[15, 46], they still suffer from numerous limitations, including

a natural tendency to decohere, or imperfections in the quantum

gates, which can lead to accumulating errors or “noise”. Due to the

modest scale and noisy nature of quantum computers, the modern

and near-term quantum era is sometimes referred to as the NISQ

(Noisy Intermediate-Scale Quantum) era[44].

In this context, optimization of quantum programs or circuits has

emerged as an important area of research. By optimizing the quan-

tum circuit, circuit optimizers can reduce the number of gates and

thus the number of operations in the circuit. In addition to increas-

ing efficiency, quantum optimizers can improve circuit fidelity by

reducing errors due to decoherence, and even make computations

possible that are otherwise impossible (by bringing the computation

within the decoherence envelope of the quantum computer).

Optimization of quantum circuits, however, is a challenging prob-

lem: global optimization is QMA-hard[39], which is believed to be

beyond the reach of even quantum computers. Practical optimizers

therefore typically rely on heuristics. For example, Nam et al.’s rule-

based optimization[39] and Hietala’s verified implementation[22]

269

https://github.com/UmutAcarLab/popqc
https://doi.org/10.1145/3694906.3743325
https://doi.org/10.1145/3694906.3743325
https://doi.org/10.1145/3694906.3743325
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694906.3743325&domain=pdf&date_stamp=2025-07-16

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA Pengyu Liu, Jatin Arora, Mingkuan Xu, and Umut A. Acar

lack quality guarantees and require quadratic time in the size of the

circuit. Xu et al.’s automated search-based optimizations[58, 60] face

severe scalability issues because they rely on an exponential-time

search algorithm to apply optimization rules. For these reasons,

state-of-the-art optimizers can struggle to optimize larger quantum

circuits within a reasonable amount of time (e.g., within hours).

As quantum computing continues to move from the NISQ era to

the FASQ (Fault-Tolerant Application-Scale Quantum) era[45], the

efficiency and quality limitations of quantum optimizers become

even more important, because quantum circuits are expected to

contain millions of gates. Even as the scale of the circuit optimiza-

tion challenge increases, quantum circuit optimization approaches

remain sequential. We don’t know of any provably and practically

efficient parallel algorithms for this task.

Recently, Arora et al. proposed an approach to quantum cir-

cuit optimization that is able to offer both quality guarantees and

efficiency[8] with respect to a given oracle optimizer. Their algo-

rithm assumes that the oracle optimizer works well for small to

moderate circuits of up to a few thousand gates and is parameter-

ized by a natural number Ω. The algorithm cuts the circuit into

Ω-segments, a block containing Ω gates, optimizes each segment

by using the oracle, and melds the optimized segments by optimiz-

ing along the seams of the cuts. The algorithm then compresses

the circuit by moving all gates to the beginning of the circuit as

much as possible, thus minimizing the gaps in the circuit, which

can reduce the effectiveness of the optimizer. By repeating this cut-

optimize-meld-compress process until convergence, Arora et al.[8]

prove that their algorithm can guarantee that the output circuit

has the local optimality property, which ensures that any Ω-wide
segment in the circuit is optimal with respect to the oracle. The

key to this property is the meld algorithm that “propagates” opti-

mizations in one segment to adjacent segments. They also prove,

under some reasonable assumptions, that the algorithm makes a

linear number of calls to the oracle and show that the algorithm

can improve performance significantly, leading to about an order

of magnitude improvement without degrading quality. Although

Arora et al.’s work has made significant progress by showing a path

to improving the efficiency of quantum circuit optimization, their

algorithm is sequential. Notably, the meld operations are inherently

sequential, as they propagate optimizations from one segment to

the other by sequentially optimizing segments in a sliding-window

style. Furthermore, their algorithm incurs quadratic overheads to

implement the cut, meld, and compress operations on circuits.

In this paper, we present an efficient parallel algorithm for lo-

cal optimization. As with Arora et al.’s algorithm, our algorithm

relies on an external oracle to optimize circuit segments and takes

a parameter Ω. Unlike their algorithm, our algorithm avoids cut

and meld operations for reasons of efficiency and parallelism. The

algorithm instead keeps a set of fingers into the circuit and main-

tains the invariant that all unoptimized Ω-segments of the circuit

contain a finger. Operating in rounds, the algorithm selects a set

of non-interfering fingers, optimizes in parallel the segments con-

taining the fingers, and updates the fingers to ensure the invariant.

To expose parallelism, the algorithm only uses a parallel-map con-

struct, which may be implemented in many ways, e.g., by using

fork-join primitives.

To support efficient parallel access and updates to the quantum

circuit, we represent the circuit with a sparse array of gates that

allows gates to be removed, and pair it with an index tree that

allows finding all non-deleted gates. Using this representation, we

prove that the total work (uniprocessor time) of the algorithm is

𝑂 (𝑛(Ω lg𝑛+𝑊)), where𝑛 is the number of gates in the input circuit

and𝑊 is the work of the oracle on 2Ω-segments. In practice, Ω is

a moderate constant (in hundreds), leading to constant work𝑊 for

the oracle, and 𝑂 (𝑛 lg𝑛) work for the optimizer. For span (parallel

time), we show a bound 𝑂 (𝑟 (lg𝑛 + 𝑆)), where 𝑟 is the number of

rounds required by the algorithm, 𝑛 is the number of gates in the

input circuit, and 𝑆 is the span of the oracle optimizer (equals to

𝑊 for sequential oracles). This bound shows that the algorithm

delivers significant parallelism in each round, with the caveat that

total parallelism may be limited if the number of rounds is large.

Fortunately, in practice, we observe that the number of rounds is a

modest number (fewer than 100 in most of our experiments) and

the algorithm exhibits significant parallelism.

To establish a quality guarantee on the optimized circuits, we

prove that the optimized circuit returned by the algorithm is locally

optimal, meaning any Ω-segment of the circuit is optimal with

respect to the oracle. This shows that our approach can guarantee

some degree of quality of the output while also ensuring efficiency

and parallelism.

To assess the practicality of the algorithm, we present an imple-

mentation in the Rust language and evaluate the algorithm by using

a number of quantum benchmarks. The evaluation shows that the

number of rounds required by the algorithm is small relative to

the circuit size, and therefore the algorithm scales well to multiple

cores in practice, especially as the input circuits grow larger. The

evaluation also shows that the constant factors hidden in our as-

ymptotic analysis are small and that the algorithm is fast in practice:

single-processor runs of our algorithm outperform state-of-the-art

sequential optimizers. As a combined effect of the small constant

factors and parallelism, our optimizer delivers orders of magnitude

speedups over existing optimizers, especially as circuit sizes grow,

while incurring no noticeable degradation in the quality of opti-

mization. Notably, on a 64-core computer, our parallel optimizer

can optimize circuits in seconds that existing optimizers are unable

to optimize within 24 hours of compute time. This result shows

that parallel optimization of quantum circuits can be effective, both

in terms of performance and quality.

The specific contributions of the paper include the following:

• A parallel algorithm for optimizing quantum circuits.

• Bounds on the work and span of the algorithm.

• Proof that the algorithm returns a locally optimal circuit.

• An implementation of the algorithm in the Rust language.

• An evaluation of the algorithm by considering multiple ora-

cle optimizers and challenging quantum benchmarks.

2 Background

In this section, we introduce basic concepts of quantum computing

and establish the notation used throughout this paper.

270

POPQC: Parallel Optimization for Quantum Circuits SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

2.1 Quantum States

A quantum bit or a qubit is the basic unit of quantum computation.

The state of a qubit |𝜓 ⟩ can be represented as a linear superposition

of basis states: |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼, 𝛽 ∈ C satisfy the

normalization condition |𝛼 |2 + |𝛽 |2 = 1. We can also write it as

a vector for mathematical manipulation:

[
𝛼 𝛽

]
. For an 𝑛-qubit

system, the quantum state becomes a superposition of 2
𝑛
basis

states: |𝜓 ⟩ =∑
𝑖∈{0,1}𝑛 𝛼𝑖 |𝑖⟩, and can be written as a 2𝑛-dimensional

vector.

A quantum algorithm realizes a unitary transformation 𝑈 , a

2
𝑛 × 2

𝑛
matrix with 𝑈𝑈 † = 𝐼 . When applied to the initial state

|0⟩, the state becomes𝑈 |0⟩ = |𝜓 ⟩, which contains the result of the

algorithm.

2.2 Gates and Circuits

A unitary is neither implementable on a quantum computer nor rep-

resentable due to its exponential size. So, we use a quantum circuit

C to describe a quantum algorithm, which can be represented as a

sequence of gates. A gate only acts on a small number of qubits (usu-

ally one or two), and the other qubits are left unchanged. We use [𝑔]
and [C] to denote the matrix representation of a gate 𝑔 and a circuit

C, respectively. For a single-qubit gate 𝑔 that acts on qubit 𝑖 , the

matrix representation is [𝑔] = 𝐼⊗𝑖 ⊗𝑈 ⊗ 𝐼⊗𝑛−𝑖−1, where 𝑛 is the total

number of qubits and𝑈 is a 2 × 2 unitary matrix. The matrix repre-

sentation of the whole circuit C : 𝑔1, 𝑔2, . . . , 𝑔𝑘 is the product of the

matrix representations of all the gates: [C] = [𝑔𝑘] [𝑔𝑘−1] . . . [𝑔1].
From the matrix representation, we can see that a fundamental

property of quantum circuits is that any subcircuit is interchange-

able with any equivalent subcircuit (those implementing the same

unitary transformation) because matrix multiplication is associa-

tive.

The most straightforward representation of a quantum circuit is

the gate sequence representation, where a circuit is represented as

a sequence of gates. Other representations also exist: for example,

the layered representation, where circuits are organized into layers

of independent gates. Two gates are defined as independent if
they act on disjoint sets of qubits. This layered representation is

valuable because it directly maps to parallel execution schedules

on quantum hardware, with the number of layers or depth serving

as a natural indicator of the running time of the circuit, which is a

quantum analogue of span in classical computing.

2.3 Quantum Circuit Optimization

Circuit optimization transforms an input quantum circuit into an

equivalent circuit (same unitary) that minimizes some cost function,

with some examples being the number of gates, the circuit depth,

the number of non-Clifford gates, the number of two-qubit gates,

etc.

The optimization of large quantum circuits presents significant

challenges due to the exponential growth in the dimensionality of

the underlying unitary transformations with increasing qubit count.

Indeed, global optimization of quantum circuits has been proven

to be QMA-hard[25]. As a result, most existing quantum circuit

optimization methods are local, meaning that they only optimize a

small part of the circuit at a time.

2.4 Parallelism Model

We specify the parallel algorithms using traditional algorithmic

style, written in pseudocode, and use traditional work and span

(depth) analysis (e.g.,[1]).We use a parallel-map (parmap) primitive

as the only means of exposing parallelism. This primitive maps over

the elements of a collection in parallel and computes some value

for each element, returning the collection of result values. When

analyzing work and span, we assume that this primitive adds a

logarithmic (in the number of iterations) cost to the span of each

iteration. This is a conservative assumption and it is realistic for the

multicore architecture, where parallel maps can be implemented

with a logarithmic-depth fork-join tree.We note that for our specific

algorithm and analysis, a stronger assumption such as constant-

span parallel-map would not improve our bounds, because the

iterations all have at least logarithmic span.

3 A Parallel Data Structure for Quantum

Circuits

To optimize a quantum circuit in parallel, we propose a specialized

data structure that enables efficient parallel access andmanipulation

of gates. Our data structure addresses a key challenge in quantum

circuit optimization: as the optimization process progresses, the

circuit becomes increasingly sparse due to gate removals. This

sparsity requires efficient mechanisms for locating neighboring

gates without scanning the entire circuit. Algorithm 1 shows the

interface for our circuit data structure alongwith the cost bounds for

each operation. To support the operations with the given bounds,

we use an array to store the gates. This enables constant-time

access to each gate given its index in the array. To remove a gate

(e.g., during optimization), we replace it with a “tombstone”, which

indicates an absent gate.

Our algorithm operates by optimizing circuit segments using
the oracle optimizer. A segment is defined as a contiguous sequence

of non-tombstone gates between indices 𝑖 and 𝑗 in the circuit’s

gate array. We call a segment an Ω-segment if it contains Ω gates.

These segments form the basic units of optimization in our ap-

proach. For this to work efficiently, the algorithm must disregard

the tombstones when partitioning the circuit into segments, which

are then optimized independently. This can be challenging because

as the optimization proceeds, the number of tombstones increases.

We therefore augment the array with a binary tree data structure,

which we call the index tree, that helps locate the gates efficiently.

The index tree takes the form of a complete binary tree, where

each leaf of the tree corresponds to a gate in the circuit and is

labeled with a weight of 1 if there is a gate at that position, and 0

if there is a tombstone. We tag each internal node with a weight,

which is equal to the sum of the weights of its children, indicating

the number of gates in the subtree rooted at that node. Figure 1

shows an example index tree for a circuit with 5 gates. Initially, as

shown in Figure 1a, the index tree has 5 leaves, all with a weight of

1, representing the state before any optimization. We realize that

we can optimize the circuit by removing the two X gates separated

by a CNOT gate and replacing them with tombstones. To update the

index tree, we change the weights of the leaves corresponding to

the removed X gates to 0 and update all the weights to reflect this

change. Figure 1b shows the index tree after optimization.

271

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA Pengyu Liu, Jatin Arora, Mingkuan Xu, and Umut A. Acar

Algorithm 1: The interface for the quantum circuit data

structure. For cost bounds, 𝑛 is the number of gates in the

circuit.

1 Interface Circuit

2 type circuit

// Create a circuit from a gate array.

// Cost: 𝑂 (𝑛) work and 𝑂 (lg𝑛) span

3 def create(g: gate array): circuit;

// Return the number of gates, excluding

tombstones, before an index 𝑖.

// Cost: 𝑂 (lg𝑛) work and span

4 def before(c: circuit, i: int): int;

// Return the 𝑖𝑡ℎ gate, excluding all

tombstones.

// Cost: 𝑂 (lg𝑛) work and span

5 def get(c: circuit, i: int): gate;

// Replace each gate at the specified index

with the specified gate.

// Use a tombstone to indicate a removed gate.

// Cost: For 𝑙 gates, 𝑂 (𝑙 lg𝑛) work and 𝑂 (lg𝑛)
span

6 def substitute(c: circuit, g: (int×gate) array): void;
// Return the gate array of the circuit,

excluding all tombstones.

// Cost: 𝑂 (𝑛) work and 𝑂 (lg𝑛) span

7 def gates(c: circuit): gate array;

5

4 1

2 2

1 1 1 1

1 0

1

a)

H

X X

3

2 1

1 1

0 1 1 0

1 0

1

Tomb
Stone

Tomb
Stone

b)

H

Figure 1: The index tree data structure. a) A circuit with

5 gates and a corresponding index tree. b) A circuit after

optimization with 3 gates remaining and the updated index

tree.

To create a circuit from a given array of gates, we construct the

index tree and tag each internal node layer by layer; this requires

linear work and logarithmic span.

Algorithm 2: POPQC Algorithm for parallel optimization

of quantum circuits. The algorithm takes as input 1) an

oracle optimizer denoted by “oracle”, 2) a gate arrayA, and

3) a segment size Ω, and outputs an optimized circuit.

1 def POPQC(oracle: gate array→ gate array, A: gate

array, Ω: int) : gate array
// Initialize fingers

2 F ← { 0, Ω, 2 · Ω, . . . , ⌊ |A |Ω ⌋ · Ω }
// Create circuit

3 C ← Circuit.create(A)
// Optimize in rounds

4 while F ≠ ∅ do
5 F ← optimizeSegments(C, F , oracle, Ω)
6 end

// Return the gates of the optimized circuit

7 return Circuit.gates(C)
8 end

For the before operation, we start at the leaf corresponding to

the specified index and walk up the index tree to the root, summing

the weights of left siblings along the path. Figure 1a illustrates this

process with an example that finds the number of non-tombstone

gates before CNOT1,2. We trace the unique path from the leaf cor-

responding to CNOT1,2 to the root (shown as the red path). Along

this path, the first node has weight 1 with no left sibling, while the

second node has weight 2 with a left sibling of weight 2. Since only

the second node contributes a left sibling weight, we conclude that

there are two non-tombstone gates before CNOT1,2.
Because the index tree is balanced, this requires𝑂 (lg𝑛) work and

span. The get operation takes an integer 𝑖 and fetches the 𝑖𝑡ℎ gate,

ignoring all tombstones. This can be implemented in logarithmic

work and span by starting at the root of the index tree and tracing

a path down to a leaf. The substitute operation takes an array of

index-gate pairs, substitutes the gates at the specified indices with

the specified gates, and updates the index tree. The gates operation

returns the gate array of the circuit, excluding all tombstones.

The index tree data structure naturally generalizes to the layered

representation of circuits (discussed in Section 2.2): we think of each

layer as a “big” gate and perform all operations at the granularity

of layers accordingly. For our results, we primarily use the gate

sequence representation, but we also use the layered representation

for an additional experiment on optimizing depth (Section 7.8).

4 Algorithm

We present the POPQC (Parallel Optimizer for Quantum Circuits)

algorithm in this section. At a high level, the algorithm works by

tracking a set of fingers to be optimized and optimizing in parallel

the segments around the fingers until no further optimization is

possible. The fingers are a set of indices that track the indices of

the circuit near which further optimization is needed.

We say that two fingers are non-interfering if there are at least

2Ω gates between them. This property allows us to optimize the

segments around these fingers in parallel without conflicts.

272

POPQC: Parallel Optimization for Quantum Circuits SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

Algorithm 3: optimizeSegments Algorithm

1 def optimizeSegments(C: circuit, F : int array, oracle:
gate array→ gate array, Ω: int) : int array
// Select non-interfering fingers to optimize

2 F𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , F𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ← selectFingers(F , C, Ω)
// Optimize segments around selected fingers

independently

3 (F𝑛𝑒𝑤, C𝑢𝑝𝑑𝑎𝑡𝑒𝑠) ← parmap 𝑓 ∈ F𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
4 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ← {Circuit.get(C, Circuit.before(C, 𝑓) +

𝑖) for 𝑖 ∈ [−Ω,Ω]}
5 𝑜𝑝𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡 ← oracle(𝑠𝑒𝑔𝑚𝑒𝑛𝑡)
6 if |𝑜𝑝𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡 | < |𝑠𝑒𝑔𝑚𝑒𝑛𝑡 | then

// Update fingers

7 F𝑛𝑒𝑤 ← {Circuit.before(C, 𝑓) −
Ω,Circuit.before(C, 𝑓) + Ω}

8 𝑜𝑝𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡 ←
padWithTombstone(𝑜𝑝𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡, |𝑠𝑒𝑔𝑚𝑒𝑛𝑡 |)

// Collect updates to circuit

9 C𝑢𝑝𝑑𝑎𝑡𝑒𝑠 ← {(Circuit.before(C, 𝑓) +
𝑖, 𝑜𝑝𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡 [𝑖 + Ω]) for 𝑖 ∈ [−Ω,Ω]}

10 return (F𝑛𝑒𝑤, C𝑢𝑝𝑑𝑎𝑡𝑒𝑠)
11 else

12 return (∅, ∅)
13 end

14 end

15 F𝑛𝑒𝑤 ←
⋃

𝑓 ∈F𝑛𝑒𝑤 𝑓

16 C𝑢𝑝𝑑𝑎𝑡𝑒𝑠 ←
⋃

𝑐∈C𝑢𝑝𝑑𝑎𝑡𝑒𝑠 𝑐

// Apply updates to circuit

17 Circuit.substitute(C, C𝑢𝑝𝑑𝑎𝑡𝑒𝑠)
// Merge two sorted lists, removing duplicate

items and maintaining sorted order

18 F ← mergeAndDeduplicate(F𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔, F𝑛𝑒𝑤)
19 return F
20 end

Algorithm 2 shows the pseudo-code for the POPQC algorithm.

The algorithm is parameterized by a local oracle optimizer that

can optimize a small circuit segment. We represent the oracle as

a function and make no assumptions about its inner workings. In

addition to the oracle, the algorithm takes as input the gate array

A representing the circuit to optimize, and a segment size Ω.
The algorithm maintains a set of fingers (F) and optimizes seg-

ments around them. More precisely, given a finger at some position

in the circuit, the algorithm presumes that any Ω-segment con-
taining the finger needs to be optimized. We say that a segment

from index 𝑖 to 𝑗 contains a finger at 𝑓 , if 𝑖 ≤ 𝑓 < 𝑗 .

To optimize the input circuit, the algorithm proceeds in rounds.

Each round of optimization uses the optimizeSegments algorithm,

which starts by partitioning the fingers into two sets: F𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ,
which contains non-interfering fingers that will be optimized, and

F𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 , which contains the remaining fingers that will not be

optimized in the current round. This is done using the selectFin-

gers algorithm (Algorithm 4). Then, for each finger 𝑓 ∈ F𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ,

Algorithm 4: selectFingers Algorithm

1 def selectFingers(F : int array, C: circuit, Ω: int) : (int
array, int array)

2 (F𝑒𝑣𝑒𝑛, F𝑜𝑑𝑑) ← parmap 𝑖 ∈ {0, · · · , |F |}
3 𝑔𝑟𝑜𝑢𝑝𝐼𝑛𝑑𝑒𝑥 ← ⌊Circuit.before(C, F [𝑖])/2Ω⌋
4 𝑔𝑟𝑜𝑢𝑝𝐼𝑛𝑑𝑒𝑥𝑃𝑟𝑒𝑣 ← if 𝑖 >

0 then ⌊Circuit.before(C, F [𝑖 − 1])/2Ω⌋ else − 1
// Determine if 𝑓 is the first finger in

its group by comparing its group index
and the group index of the previous
finger

5 if 𝑔𝑟𝑜𝑢𝑝𝐼𝑛𝑑𝑒𝑥 > 𝑔𝑟𝑜𝑢𝑝𝐼𝑛𝑑𝑒𝑥𝑃𝑟𝑒𝑣 then

6 if 𝑔𝑟𝑜𝑢𝑝𝐼𝑛𝑑𝑒𝑥 mod 2 = 0 then

7 return ({𝑖}, ∅)
8 else

9 return (∅, {𝑖})
10 end

11 else

12 return (∅, ∅)
13 end

14 end

15 F𝑒𝑣𝑒𝑛 ←
⋃

𝑓 ∈F𝑒𝑣𝑒𝑛 𝑓

16 F𝑜𝑑𝑑 ←
⋃

𝑓 ∈F𝑜𝑑𝑑 𝑓

// Return the larger of the two sets

17 if |F𝑒𝑣𝑒𝑛 | > |F𝑜𝑑𝑑 | then
18 return F𝑒𝑣𝑒𝑛, F \ F𝑒𝑣𝑒𝑛
19 else

20 return F𝑜𝑑𝑑 , F \ F𝑜𝑑𝑑
21 end

22 end

the optimizeSegments algorithm finds a 2Ω-segment centered at

𝑓 using the index tree and optimizes the segment using the oracle.

Because the selected fingers are non-interfering, the algorithm can

optimize around each finger in parallel. As the algorithm optimizes

the segments around each selected finger, it creates a new set of

fingers F𝑛𝑒𝑤 around the segments that are optimized by the oracle.

Specifically, if the oracle does not optimize the segment (determined

by comparing the size or the gate count of the optimized segment

to the unoptimized one, denoted as |𝑠𝑒𝑔𝑚𝑒𝑛𝑡 |), then the algorithm

removes the finger. Otherwise, it adds new fingers at the bound-

aries of the optimized segment. As we will show in Lemma 6, the

optimizeSegments algorithm preserves the invariant that each

unoptimized Ω-segment contains a finger.

The selectFingers algorithm partitions the set of fingers into

two sets, where the first set contains non-interfering fingers and the

second set contains the remaining fingers, while trying to maximize

the size of the first set. To do so, the selectFingers algorithm

first partitions the circuit into groups of 2Ω gates each, except

possibly for the last group. It then selects the first finger from

each even-numbered group to construct the set F𝑒𝑣𝑒𝑛 . Similarly, the

algorithm selects the first finger from each odd-numbered group to

construct the set F𝑜𝑑𝑑 . The algorithm then selects the larger of F𝑜𝑑𝑑
and F𝑒𝑣𝑒𝑛 , and returns the corresponding partition of the fingers

273

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA Pengyu Liu, Jatin Arora, Mingkuan Xu, and Umut A. Acar

Tomb
Stone

Tomb
Stone

Tomb
Stone

Tomb
Stone

Tomb
Stone

Tomb
Stone

Fingers Segment to
be optimized

a)

b)

c)

Selected
Fingers

Figure 2: An illustration of a run of the POPQC algorithm.

We assume Ω = 2, and thus the segments being optimized

consist of 2Ω = 4 gates.

to ensure maximum progress. Actually, it is guaranteed that this

selectFingers algorithm selects a constant fraction of the fingers

as we will show in Lemma 1.

Figure 2 illustrates an example run of the POPQC algorithm.

As shown in Figure 2a, we initially have two fingers at indices 2

and 6. These two fingers are non-interfering, and thus, in the first

round, the optimizeSegments algorithm optimizes the segments

centered at these fingers in parallel. This optimization removes

the two X gates from the left segment, while the right segment

remains unaffected (no optimizations are needed). The algorithm

then removes the finger within the second, unaffected segment

and adds the new fingers at the boundaries of the first, optimized

segment, as shown in Figure 2b. In the second round, the two fingers

interfere, so only one of them is selected for optimization. Assuming

the right finger is selected, the algorithm optimizes the segment

containing it, which deletes two CNOT gates as shown in Figure 2c.

This algorithm continues optimization in rounds until no more

fingers remain.

5 Efficiency Analysis

In this section, we analyze the termination and efficiency of the

POPQC algorithm. Our analysis relies on two key lemmas that

characterize the efficiency of finger selection and the total number

of oracle calls required.

Lemma 1 (Efficiency of selectFingers). The selectFingers
algorithm has work 𝑂 (|F | lg𝑛) and span 𝑂 (lg𝑛). Furthermore, the
returned set of non-interfering fingers contains at least a 1

4Ω fraction
of all fingers.

Proof. The selectFingers algorithm processes all fingers in

parallel. For each finger 𝑓 ∈ F , the algorithm performs two be-

fore operations involving the index tree, which take 𝑂 (lg𝑛) time.

Therefore, the work is 𝑂 (|F | lg𝑛) and the span is 𝑂 (lg𝑛).
To prove that the number of selected fingers is a constant fraction

of all the fingers, note that

|F𝑒𝑣𝑒𝑛 | + |F𝑜𝑑𝑑 | ≥
|F |
2Ω

,

because each group has at most 2Ω fingers and for each group with

at least one finger, one of the fingers is selected. Thus, we have

max(|F𝑒𝑣𝑒𝑛 | , |F𝑜𝑑𝑑 |) ≥ | F |
4Ω , which means at least a

1

4Ω fraction of

all fingers are selected. □

Lemma 2 (Oracle Call Efficiency). The POPQC algorithm
requires 𝑂 (𝑛) oracle calls.

Proof. We prove this lemma by defining a potential function

𝐿 = |F | + 2 |C|, then showing that it is bounded by 𝑂 (𝑛) and
decreases by at least 1 for each oracle call.

For each oracle call, there are two cases:

a) The oracle does not optimize the segment. Only the selected

finger is removed, and |F | decreases by 1.

b) The oracle makes changes to the circuit. This means that the

size of the optimized circuit is reduced by at least 1, so |C|
decreases by at least 1. The original finger is removed and

two new fingers are added, so |F | increases by 1.

Therefore, 𝐿 decreases by at least 1 for each oracle call in either

case. Initially, we have 𝐿 =
⌈
𝑛
Ω

⌉
+ 2𝑛. Hence, the number of oracle

calls is 𝑂 (𝑛). □

We have the following lemma by combining the two lemmas

above.

Lemma 3 (Number of Fingers). Let F 𝑖 be the set of fingers in
the 𝑖-th round. The total number of fingers across all rounds,

∑
𝑖

��F 𝑖
��,

is 𝑂 (Ω𝑛).

Proof. From Lemma 1, we know that in the 𝑖-th round, the

number of selected fingers satisfies

��F 𝑖
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

�� ≥ |F𝑖 |
4Ω . By Lemma 2,

the total number of oracle calls across all rounds is 𝑂 (𝑛). Since
each selected finger results in exactly one oracle call, we have∑

𝑖

��F 𝑖
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

�� = 𝑂 (𝑛). Therefore, ∑𝑖

��F 𝑖
�� ≤ 4Ω · ∑𝑖

��F 𝑖
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

�� =
4Ω ·𝑂 (𝑛) =𝑂 (Ω𝑛). □

Finally, we prove the work and span bounds on the POPQC

algorithm.

Theorem 4 (Work and Span of POPQC). Suppose the upper
bound of the work of an oracle call on a 2Ω-segment is𝑊 and the span
is 𝑆 . The POPQC algorithm has almost linear work𝑂 (𝑛(Ω lg𝑛+𝑊))
in total and logarithmic span 𝑂 (𝑟 (lg𝑛 + 𝑆)), where 𝑟 is the number
of rounds (iterations of the outer loop) and 𝑛 is the size of the circuit.

Proof. We analyze the work and span of the optimizeSeg-

ments function by examining each component:

• selectFingers: As established in Lemma 1, this has work

𝑂 (|F | lg𝑛) and span 𝑂 (lg𝑛).
• Parallel optimization: For each finger 𝑓 ∈ F𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , we
perform:

274

POPQC: Parallel Optimization for Quantum Circuits SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

– Segment extraction: 𝑂 (Ω lg𝑛) work and 𝑂 (lg𝑛) span
– Oracle call: 𝑂 (𝑊) work and 𝑂 (𝑆) span
– Collecting updates: 𝑂 (Ω) work and 𝑂 (lgΩ) span
This gives a total work of 𝑂 (|F𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 | (Ω lg𝑛 +𝑊)) and
span 𝑂 (lg𝑛 + 𝑆) for this phase. Here, we use the fact that
Ω < 𝑛.

• Circuit substitution: The substitute function processes

input of length𝑂 (Ω · |F𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 |), requiring𝑂 (Ω · |F𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 | ·
lg𝑛) work with 𝑂 (lg𝑛) span.
• Finger merging: ThemergeAndDeduplicate operation

has work 𝑂 (|F |) and span 𝑂 (lg |F |).
For each round, the total work is𝑂 (|F | lg𝑛+ |F𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 | (Ω lg𝑛+

𝑊)) and the span per round is 𝑂 (lg𝑛 + 𝑆).
By Lemma 3, the sum of |F | across all rounds is 𝑂 (Ω𝑛). By

Lemma 2, the sum of |F𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 | across all rounds is𝑂 (𝑛). Therefore,
the total work is 𝑂 (𝑛(Ω lg𝑛 +𝑊)), and the span is 𝑂 (𝑟 (lg𝑛 + 𝑆)),
where 𝑟 is the number of rounds. While 𝑟 could theoretically be

as large as Θ(𝑛) in the worst case, our empirical results in the

next section demonstrate that 𝑟 is typically a small constant in

practice. □

In practice, we choose Ω to be a constant factor that depends on

the oracle. As we increase Ω, the oracle and thus the run-time will

increase, but the quality may not increase due to natural locality of

circuits. The goal will be to find a setting for Ω that delivers good

quality at reasonable cost.

Assuming that Ω is constant, we can conclude that the work and

span of the oracle is also constant. As a corollary to Theorem 4,

we therefore conclude that the work of the POPQC algorithm is

𝑂 (𝑛 lg𝑛) and the span is 𝑂 (𝑟 lg𝑛).

6 Local Optimality of POPQC
We define local optimality with respect to a given oracle function

“oracle” and segment size Ω as follows: for a circuit represented

by a gate array A, we say A is locally optimal if for any Ω-
segment A′, applying the oracle optimizer does not reduce its size,

i.e., |A′ | ≤ |oracle(A′) |.
For this definition to be meaningful, we require the oracle func-

tion to be well-behaved. An oracle is well-behaved if, after it has

optimized a circuit, any segment of its output is optimal with respect

to the oracle. Formally, if A′ = oracle(A), then for any segment

A′′ of A′, we have |A′′ | ≤ |oracle(A′′) |.
This property ensures that when we call the oracle with a 2Ω-

segment, the output is locally optimal with respect to the oracle

and segment size Ω.
Before proving the local optimality of POPQC, we first establish

two correctness lemmas for the selectFingers and optimizeSeg-

ments algorithms.

Lemma 5 (Correctness of selectFingers). The selectFin-
gers algorithm returns a partition of the finger set such that the first
part contains non-interfering fingers (for any two selected fingers,
there are at least 2Ω gates between them).

Proof. The algorithm first computes two groups of fingers, even-

numbered (F𝑒𝑣𝑒𝑛) and odd-numbered (F𝑜𝑑𝑑). Because it selects only
one finger from each group, any pair of fingers in F𝑒𝑣𝑒𝑛 are from

different groups and there is always an odd group between them.

Therefore, any pair of fingers in F𝑒𝑣𝑒𝑛 is separated by at least a

2Ω-segment, and is non-interfering. Similarly, any pair of fingers

in F𝑜𝑑𝑑 is also non-interfering. □

We now prove the correctness of optimizeSegments by show-

ing that it preserves the invariant that every unoptimized Ω-
segment contains a finger.

Lemma 6 (Correctness of optimizeSegments). For any well-
behaved oracle, if the input circuit C and the fingers F satisfy the
invariant that every unoptimized Ω-segment contains a finger, then
optimizeSegments returns an updated circuit C′ and updated fingers
F ′ that maintain this invariant: each unoptimized Ω-segment in C′
contains a finger from F ′. Besides, the updated fingers F ′ are sorted.

Proof. During the execution of optimizeSegments, for each

selected finger 𝑓 ∈ F𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , one of the following two cases occurs:

(1) The oracle makes no changes to the 2Ω-length segment

centered at 𝑓 . This implies that all Ω-length subsegments

within this region are locally optimal by the well-behaved

property of the oracle. The finger 𝑓 can be safely removed.

(2) The oracle optimizes the 2Ω-length segment centered at 𝑓 .

After optimization, any new Ω-length segments fall into two

categories: 1) Segments fully contained within the optimized

region, which are optimal by the well-behaved property

of the oracle. 2) Segments that cross the boundaries of the

optimized region, which contain the boundary fingers we

placed at the start and end of the optimized region. Therefore,

all potentially unoptimized Ω-length segments are properly

tracked with the updated fingers.

Thus, the invariant is preserved: each unoptimized Ω-segment in

the updated circuit C′ contains a finger from the updated set F ′.
We note that the set F𝑛𝑒𝑤 is sorted because the selected fingers

are non-interfering and F𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 is also sorted. So a simple merge

operation is enough to maintain the sorted property. □

Based on these lemmas, we now prove that the function POPQC

is correct.

Theorem 7 (Local Optimality of POPQC). The POPQC algo-
rithm produces a locally optimal circuit with respect to a given oracle
function oracle and segment size Ω.

Proof. The algorithm starts by initializing the fingers F =

[0,Ω, 2Ω, · · ·], placing a finger at the start of each Ω-segment. This

ensures our initial invariant holds: every unoptimized Ω-segment

contains a finger. We note that the choice of the initial fingers is

not unique, but this specific choice minimizes the initial number

of fingers. By Lemma 6, each call to optimizeSegments preserves

the invariant that every unoptimized Ω-segment contains a finger.

Furthermore, by Lemma 1, in each round, at least one finger is se-

lected, and by Lemma 2, the total number of oracle calls is bounded

by 𝑂 (𝑛). The algorithm terminates in at most 𝑂 (𝑛) rounds.
Since our invariant guarantees that every unoptimized Ω-

segment contains a finger, the absence of fingers implies that no

unoptimized Ω-segments remain in the circuit. Therefore, the final

circuit is locally optimal with respect to the oracle and segment

size Ω. □

275

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA Pengyu Liu, Jatin Arora, Mingkuan Xu, and Umut A. Acar

7 Implementation and Evaluation

Thus far in the paper, we have presented an algorithm that guar-

antees 𝑂 (𝑛 lg𝑛) work and 𝑂 (𝑟 lg𝑛) span (assuming that Ω is a

constant). Is this algorithm practical and does it perform well in

practice? Specifically, can it take advantage of parallelism effectively

to optimize large circuits? In this section, we describe an imple-

mentation and present an evaluation that answers these questions

affirmatively.

7.1 Implementation

We implement the described algorithm in the Rust language, using

the Rayon library which provides fork-join parallelism.
1
Our im-

plementation matches closely with the algorithm description. In

our implementation, we did not attempt to optimize manually the

overheads of parallelism (e.g., via granularity control data [2, 3])

but instead left it to Rust+Rayon’s adaptive loop-splitting strategy,

which attempts to avoid the overheads of parallelism when the loop

iterations are computationally insignificant. As we discuss, this

works well in most cases, except perhaps for the smallest circuits,

when parallelism overheads can be proportionally more significant.

In our implementation, we primarily use the VOQC[22] opti-

mizer, because at the circuit sizes we consider, it is the fastest opti-

mizer and produces the best quality outputs within a reasonable

amount of time (e.g., 24 hours). (See Section 8 for a discussion of

other optimizers.) Our implementation calls the oracle via a system

call and is therefore relatively easy to adapt to use other optimizers

as oracles. As an additional oracle, we use theQuartz[60] optimizer,

which is significantly slower than VOQC but allows us to optimize

other cost metrics, such as the depth of the circuit. We note that

both oracle optimizers are fast for small to moderate size circuits

consisting of several thousand gates, but perform poorly on larger

circuits, which are necessary to realize the benefits of quantum

computing.

For our experiments, we choose Ω = 200 because it provides

a good balance between speed and quality. The results are not

particularly sensitive to the exact setting of Ω within the range

from 100 to 800 and in principle, Ω can be set to a circuit-dependent

value. (see extended version[33] for details).

7.2 Benchmarks

To evaluate the performance and effectiveness of our techniques,

we select benchmarks from existing benchmarking suites, including

PennyLane[11], Qiskit[55], and NWQBench[30]. The benchmarks

include boolean satisfaction problems (BoolSat), the BinaryWelded

Tree (BWT), Grover’s searching algorithm (Grover)[20], the HHL al-

gorithm for solving linear equations (HHL)[21], Shor’s algorithm for

factoring integers (Shor)[49], square-root algorithm (Sqrt), state
vector preparation (StateVec), and Variational Quantum Eigen-

solver (VQE)[43]. We choose the specific benchmarks because their

size scales rapidly with qubit counts, and they remain challenging

for state-of-the-art optimizers. Our benchmarks and oracles all use

a gate set consisting of Hadamard (H), Pauli-X (X), controlled-not
(CNOT), and rotation-Z (RZ), which is the gate set used by VOQC.

1
We implemented an earlier version of the algorithm in Parallel ML [6, 7, 54] but later

changed to Rust to make the implementation more accessible.

7.3 Evaluation Setup

We conduct experiments on a machine with 64 cores (AMD EPYC

7763) and 256GB RAM. To evaluate our optimizer POPQC, we first

compare it to the VOQC optimizer (Section 7.4). Because VOQC

is sequential, this comparison includes two advantages of our op-

timizer, locality and parallelism. We then separately analyze the

impact of local optimality (Section 7.5) and parallelism (Section 7.6)

on the overall performance.

Subsequently, we examine the work efficiency of our optimizer

(Section 7.7 and extended version[33] for details), demonstrate its

flexibility by integrating Quartz as an alternative oracle optimizer

with a layered circuit representation (Section 7.8), and analyze the

sensitivity of our method to different values of Ω (see extended

version[33] for details).

7.4 Our Optimizer is Orders of Magnitude Faster

than VOQC

We compare the speed and quality of our POPQC optimizer with

the VOQC optimizer, which is sequential (Table 1). We note that

in some cases, our baseline optimizer VOQC does not terminate in

our timeout of 24 hours. We indicate non-terminating runs with an

“N.A.” in Table 1 and exclude their missing data from gate reduction

averages. Given the large timeout, it may seem surprising that

optimizers can take such a long time, but it is common indeed in

quantum circuit optimizers. Such large run times are one of the

motivations behind this work. Our parallel optimizer terminates on

all benchmarks and does so relatively quickly, achieving more than

10
3× speedup on average across all benchmarks. As the table shows,

the speedups increase as the circuit sizes increase, e.g., for Shor
with 16 qubits, the speedup is more than 10

4×. We also observe that

the performance improvements come at little to no deterioration in

optimization quality: for most benchmarks, we see a slight decrease

in quality, e.g., 0.5%, while in one benchmark HHL, our optimizer

POPQC improves quality by more than 10% over VOQC.

It’s not intuitive why POPQC outperforms its base oracle VOQC

in some cases. This occurs because VOQC applies optimization

passes sequentially. A later pass might create opportunities for

an earlier pass, which VOQC would miss in a single execution.

In contrast, POPQC applies the oracle multiple times to nearby

segments and can capture these opportunities, effectively behaving

like “running VOQC until convergence” rather than a single pass.

The fact that we do not see significant degradation in quality may

come across as surprising, because our optimizer only performs

local optimization. We attribute this outcome to two factors. First,

our locality requirement applies at each and every Ω-segment; it

therefore is a reasonably strong guarantee in practice, especially for

moderate values of Ω (e.g., Ω ≥ 100). Second, much like classical

algorithms, quantum circuits naturally possess some degree of

locality, because each segment of the circuit performs a specific

function, leading to few, if any, optimizations across distant gates.

7.5 Local Optimality Unlocks Significant

Efficiency

To measure the efficiency improvement due to local optimality

(compared to global optimality), we compare the single-core run

time of our POPQC optimizer with the VOQC optimizer. As can be

276

POPQC: Parallel Optimization for Quantum Circuits SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

VOQC(1 thread) POPQC(64 threads)

benchmark #qubits #gates

gate

reduction

time(s)

gate

reduction

time(s) speedup

BoolSat

28 75818 83.2% 145.5 83.7% 3.6 40.2

30 138443 83.3% 722.5 83.6% 4.6 155.8

32 262724 83.3% 3055.0 83.4% 5.6 544.2

34 510137 83.3% 15952.6 83.3% 7.6 2091.1

BWT

17 361603 44.7% 12165.6 44.7% 6.9 1770.0

21 553603 51.4% 32549.3 51.4% 12.0 2712.5

25 946801 N.A. ≥86400.0 52.9% 17.2 ≥5027.9
29 1298801 N.A. ≥86400.0 53.9% 20.0 ≥4326.3

Grover

9 8968 29.4% 5.8 29.3% 1.1 5.1

11 27136 29.9% 63.8 29.6% 1.5 42.9

13 72646 29.7% 565.3 29.3% 2.1 264.2

15 180497 29.5% 3911.3 28.9% 3.4 1151.2

HHL

7 5796 44.5% 0.3 58.9% 0.8 0.4

9 68558 44.7% 151.1 59.5% 1.7 89.2

11 680376 41.9% 33483.9 56.5% 6.0 5600.6

13 5954308 N.A. ≥86400.0 55.9% 35.1 ≥2464.3

Shor

10 8476 11.1% 5.4 10.9% 0.5 10.7

12 31267 3.2% 106.6 3.2% 0.6 173.5

14 136320 11.3% 2276.9 11.1% 1.6 1451.7

16 545008 11.3% 53486.1 11.1% 4.1 13110.7

Sqrt

42 111956 42.2% 442.8 41.3% 3.4 132.0

48 258725 42.2% 3154.9 40.0% 5.4 585.3

54 585234 42.2% 17854.0 38.8% 9.5 1875.2

60 1306507 N.A. ≥86400.0 37.9% 17.7 ≥4879.6

StateVec

5 32147 79.6% 12.9 79.6% 1.5 8.7

6 134632 79.2% 605.1 79.1% 2.6 230.4

7 546035 78.9% 15272.9 78.8% 3.7 4084.1

8 2175747 N.A. ≥86400.0 78.7% 9.6 ≥9027.5

VQE

18 29800 64.4% 8.8 64.8% 0.9 9.8

22 48448 61.6% 37.3 62.0% 1.1 33.6

26 72600 59.0% 122.7 59.3% 1.4 85.3

30 102768 56.5% 308.8 56.9% 1.4 228.5

average 48.94% 51.20% ≥1944.14

Table 1: Optimization quality (represented as gate reduction) and running time comparison of POPQC and VOQC on a set of

quantum benchmarks. VOQC is sequential and POPQC is executed on 64 threads.

seen in Table 2, POPQC achievesmore than 70× speedup on average.
This shows that significant speedup is due to local optimality. We

note that we do not include the output circuit sizes in this table, but

they are the same as in the parallel experiments (Table 1), which

show that (as discussed above) these improvements come without

noticeable degradation in quality of optimization.

7.6 Our Optimizer Scales Well as Number of

Cores Increases

To evaluate the scalability of our optimizer POPQC as we increase

the number of cores, we run our optimizer with different numbers

of cores up to the 64 cores of our experiment machine and calculate

the self-speedup with respect to the single-core run. We use self-

speedups, rather than calculating speedups with respect to another

oracle, for two reasons. First, our oracle is the fastest (on a unipro-

cessor) of all other sequential oracles that we have experimented

with. Second, for scalability analysis, self-speedups are more re-

vealing as they factor out other concerns, such as algorithmic and

implementation differences.

Figure 3 shows the speedups. We can discern two patterns. A

majority of the benchmarks HHL, Sqrt, BWT, Shor, StateVec and

277

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA Pengyu Liu, Jatin Arora, Mingkuan Xu, and Umut A. Acar

benchmark #qubits VOQC(1 thread) time POPQC(1 thread) time speedup

BoolSat

28 145.47 20.76 7.0

30 722.50 38.25 18.9

32 3055.01 72.32 42.2

34 15952.59 142.03 112.3

BWT

17 12165.58 164.48 74.0

21 32549.34 325.93 99.9

25 ≥86400.00 527.38 ≥163.8
29 ≥86400.00 672.45 ≥128.5

Grover

9 5.78 3.52 1.6

11 63.76 10.97 5.8

13 565.35 31.22 18.1

15 3911.32 77.78 50.3

HHL

7 0.32 1.23 0.3

9 151.12 14.38 10.5

11 33483.88 154.47 216.8

13 ≥86400.00 1338.62 ≥64.5

Shor

10 5.43 2.14 2.5

12 106.58 7.20 14.8

14 2276.87 34.07 66.8

16 53486.13 135.62 394.4

Sqrt

42 442.84 53.56 8.3

48 3154.85 125.29 25.2

54 17854.00 280.18 63.7

60 ≥86400.00 632.01 ≥136.7

StateVec

5 12.95 4.47 2.9

6 605.14 18.90 32.0

7 15272.95 69.92 218.4

8 ≥86400.00 272.07 ≥317.6

VQE

18 8.79 3.57 2.5

22 37.27 5.83 6.4

26 122.73 9.01 13.6

30 308.75 12.67 24.4

average ≥73.3

Table 2: Running time comparison (in seconds) between POPQC and VOQC, both executed on a single thread. The speedup

column shows how many times faster POPQC is compared to VOQC.

Grover scale well, achieving speedups of 20 fold or more. The

remaining benchmarks, VQE and BoolSat, scale less well.
To understand the scalability of VQE and BoolSat, we perform

two additional experiments that measure the number of rounds and

speedup with respect to input size.

Figure 4 shows the number of rounds for each benchmark; for

each benchmark, the first bar is the number of rounds for the small-

est instance and the second bar is the number of rounds for the

largest instance. We observe that the number of rounds is between

20 and 130. We also observe that for a given benchmark, the number

of rounds increases slightly compared to the input sizes, e.g., for

BoolSat, the input size difference between the two bars is approx-

imately 8-fold, but the number of rounds increases by about 40%.

This is important, because our theoretical analysis shows that our

algorithm has span linear in the number of rounds, which can be

as large as the number of gates, but in practice, we see that the

number of rounds is smaller. This is because practical quantum pro-

grams/circuits exhibit a great degree of locality much like classical

programs, and consist of independent sections that do not interact

deeply. Coming back to the analysis of the scalability, we attribute

the relatively low scalability of BoolSat to the fact that it requires

a large number of rounds.

Figure 5 shows the self-speedup with 64 cores for varying input

circuit sizes. The figure shows that speedups increase with circuit

size and thus larger circuits provide more opportunities for parallel

optimization, where parallelism is most needed and beneficial. We

explain the poor scalability of VQE partly by the fact that its circuit

sizes are small (as can be seen in Figure 5). This does not explain,

278

POPQC: Parallel Optimization for Quantum Circuits SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

0 10 20 30 40 50 60
#threads

0

5

10

15

20

25

30

35

40

se
lf-
sp
ee

du
p

BoolSat
BWT
Grover
HHL
Shor
Sqrt
StateVec
VQE

Figure 3: Self-speedup using different numbers of threads

with respect to the single-thread case. The data points corre-

spond to the largest instances in each circuit family.

BoolSat BWT Grover HHL Shor Sqrt StateVec VQE
benchmarks

0

20

40

60

80

100

120

#r
ou

nd
s

Figure 4: Number of rounds for different benchmarks. For

each benchmark, the first bar represents the number of

rounds for the smallest instance and the second bar repre-

sents the number of rounds for the largest instance.

104 105 106

#gates

0

5

10

15

20

25

30

35

40

se
lf-
sp
ee

du
p

BoolSat
BWT
Grover
HHL
Shor
Sqrt
StateVec
VQE

Figure 5: Self-speedup with respect to the number of gates

using 64 threads. Each data point corresponds to a benchmark

circuit. Log-scale on the x-axis.

however, the slight degradation in the scalability of VQE after 32

cores. Poor scalability due to difficulties in controlling the grain of

parallelism is a common problem when problem sizes are small. It is

possible to engineer around this problem by carefully optimizing the

code on the target machine[2]. In our experiments, we have instead

allowed the Rust language to manage parallelism automatically; the

experiment with the VQE benchmark shows that Rust does mostly

a good job but leaves some room for improvement.

7.7 Our Optimizer is Work Efficient

The term work efficiency of a parallel algorithm refers to its ef-

ficiency with respect to the work of an optimized sequential al-

gorithm solving the same problem. Theoretically, our algorithm

performs 𝑂 (𝑛 lg𝑛) work (assuming constant Ω) and is therefore

reasonably work efficient, with respect to the Ω(𝑛) lower bound
that would be needed for circuit optimization. To assess practical

work efficiency, we compare our optimizer to theOAC[8] optimizer,

which is the fastest sequential optimizer available.OAC also ensures

local optimality (as our algorithm does), making it an appropriate

baseline for this comparison. In this comparison, both optimizers

use the same oracle (VOQC) and use approximately the same Ω
value to ensure the optimization quality differences are within 0.1%

of each other.

As shown in Table 3, in a vast majority of the benchmarks our

optimizer outperforms OAC, usually significantly. For example, for

the HHL benchmark with 13 qubits, POPQC is approximately 5×
faster than OAC. In the case of a few benchmarks, HHL, StateVec,
and VQE, our optimizer performs slightly slower with the smallest

circuits but outperforms OAC with all other circuits. We attribute

our performance advantage over OAC to the OAC’s quadratic over-

head from cutting and melding circuits during optimization, which

our index-tree data structure efficiently avoids. As a result of this as-

ymptotic gap, the performance advantage of our optimizer widens

overOAC as circuit size increases. We note that it is interesting that

our parallel algorithm when run on a uniprocessor outperforms the

best sequential optimizer. This shows that with the right algorithm,

the (perceived) overheads of parallelism can be compensated to

reap its benefits.

As another measure of work efficiency, we have also measured

the fraction of the time our optimizer spends within the oracle,

doing actual optimizations, as opposed to “administrative” work,

including selecting and updating fingers. As discussed in the ex-

tended version[33], our optimizer spends over 90% of its time in

the oracle, showing that very little time is spent for administrative

purposes.

7.8 Our Optimizer is Flexible

To demonstrate the flexibility of our method, we evaluate it us-

ing Quartz[60] as another oracle optimizer and a layered circuit

representation. Quartz is a search-based optimizer that supports

customizable cost functions to guide optimization. We define a cost

function that balances circuit depth and gate count, with a stronger

emphasis on depth reduction: cost = 10 × depth + gates. This cost
function is used both by Quartz and by our algorithm when decid-

ing whether to accept the oracle’s optimizations. For efficient cost

computation, we represent circuits in layers and optimize at the

layer granularity with Ω = 100. The results are shown in Figure 6.

Our experiments show that using this depth-aware cost function

achieves significantly better depth reduction compared to optimiz-

ing purely for gate count, with only modest increases in gate count.

Two benchmarks demonstrate particularly interesting results: For

Shor, whileQuartz with a pure gate count objective finds no opti-

mizations, our depth-aware approach reduces circuit depth by 20%

with only a small gate count increase. For VQE, the depth-aware
cost function improves both depth and gate count compared to

279

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA Pengyu Liu, Jatin Arora, Mingkuan Xu, and Umut A. Acar

Time(s) Gate Reduction

n_qubits OAC POPQC(1-thread) OAC POPQC(1-thread)

BoolSat

28 51.68 44.32 83.8% 83.7%

30 94.00 75.97 83.7% 83.6%

32 260.95 151.01 83.5% 83.4%

34 571.49 293.09 83.4% 83.4%

BWT

17 734.48 298.10 45.1% 45.0%

21 1392.15 577.99 52.2% 52.2%

25 2398.93 1083.17 55.4% 55.2%

29 4632.67 1684.60 56.5% 56.2%

Grover

9 5.73 5.51 29.4% 29.4%

11 23.54 20.13 30.0% 30.0%

13 89.72 52.49 29.8% 29.8%

15 311.93 152.74 29.6% 29.5%

HHL

7 1.39 1.55 59.0% 58.9%

9 29.47 27.82 59.5% 59.5%

11 785.73 316.79 56.6% 56.6%

13 17968.66 2692.69 56.1% 56.0%

Shor

10 6.01 5.33 11.0% 11.0%

12 25.41 14.48 3.2% 3.2%

14 154.12 70.52 11.2% 11.2%

16 968.38 274.75 11.2% 11.2%

Sqrt

42 156.25 83.26 42.1% 41.9%

48 440.49 215.53 42.2% 41.8%

54 1306.68 507.52 42.2% 41.8%

60 3592.70 1243.65 42.2% 41.8%

StateVec

5 4.28 6.12 79.6% 79.6%

6 33.23 31.35 79.2% 79.2%

7 207.16 133.82 78.8% 78.8%

8 1393.07 488.68 78.7% 78.7%

VQE

18 4.60 4.89 64.8% 64.8%

22 8.99 8.66 61.9% 62.0%

26 20.67 12.72 59.3% 59.3%

30 31.97 18.78 56.9% 56.9%

Table 3: Optimization quality (represented as gate reduction) and running time comparison of POPQC and OAC. For fairness, we

execute POPQC on a single thread and increase Ω to 400.

gate-only optimization. We hypothesize that by encouraging more

compact gate arrangements, the depth-aware cost function helps

create additional optimization opportunities that can be exploited

in subsequent rounds.

8 Related Work

In this section, we provide a comprehensive overview of quantum

circuit optimization techniques. Our approach is orthogonal to the

techniques discussed in this section, and can be combinedwith them

to achieve both the benefits of local optimality and the benefits of

the optimization techniques.

8.1 Optimization Objectives

In addition to gate count, other optimization metrics have been

proposed. In the NISQ era, circuit fidelity, which is directly related to

the success probability of quantum computation, is one of the most

important metrics. Notable examples of these cost functions include

noise-resilient circuit optimization to maximize fidelity[38, 51].

Also, NISQ devices have various hardware constraints, and thus

the optimization should be tailored to specific device architectures,

like topology, gateset, and pulse. Some examples include Ref.[14,

19, 24, 31, 34, 35, 41, 48, 57].

In the fault-tolerant quantum computing era, it is widely believed

that the T gate is the most expensive gate, and thus the T count

becomes the most important metric in the fault-tolerant era. For

280

POPQC: Parallel Optimization for Quantum Circuits SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

BoolSat BWT Grover HHL Shor Sqrt StateVec VQE
benchmarks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
la

tiv
e

ga
te

 re
du

ct
io

n

mixed cost
gate cost

BoolSat BWT Grover HHL Shor Sqrt StateVec VQE
benchmarks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
la

tiv
e

de
pt

h
re

du
ct

io
n

Figure 6: Gate and depth reduction using Quartz with differ-

ent cost functions. Each bar corresponds to the average of

the four instances in each circuit family.

small circuits, algorithms for generating asymptotically optimal T
count circuits[18] exist but are not efficient for large circuits. There

are also optimizers targeted at minimizing the T count with more

efficient algorithms[4, 5].

8.2 Optimization Techniques

To achieve the aforementioned optimization objectives, many opti-

mization techniques have been proposed.We classify them into rule-

based, search-based, resynthesis-based, and approximated methods.

Rule-based methods. Rule-based methods encode heuristic rules

into the optimizer and apply them to the circuit to optimize the

circuit[9, 22, 23, 60]. The optimizer proposed by Nam et al.[39]

and the following formally-verified implementation[22] are great

examples of rule-based optimization. These rules take quadratic

time or even cubic time in circuit size[39], thus they are not suitable

for large circuits. As another example, PyZX[27] converts the circuit

into ZX-diagrams and applies ZX-calculus rules to optimize the

circuit which is another example of rule-based optimization.

Resynthesis-based methods. Resynthesis methods compute the

unitary matrix of a small sequence of gates, then use mathematical

techniques to decompose the unitary matrix into some gateset and

hope the decomposed circuit is better than the original one. Exam-

ples include KAK decomposition[52] and Cartan decomposition[26].

However, these techniques can’t scale to larger circuits: before de-

composing, even computing the unitary takes exponential time in

circuit size. QGo[56] proposes a hierarchical approach that parti-

tions the circuit into blocks and resynthesizes each block to address

the scalability issue.

Search-based methods. Rule-based optimizers often contain man-

ually designed rules that have limited optimization capability and

are not flexible enough for gateset and cost function. To address

this, search-based optimizers have been proposed[29, 58, 60, 61]

that automatically synthesize rules to optimize the circuit. A greedy

application of the rules might lead to a local minimum. To avoid

this, Quartz[60] and Queso[58] search for all possible rules that

can be applied to the circuit, even if they increase the gate count,

hoping to find better optimizations in future iterations. As a re-

sult, this approach has delivered excellent reductions in gate count

for relatively small benchmarks but struggled to scale to large

circuits. Further improvements in this direction include reinforce-

ment learning-based methods[17, 32] that guide the optimization

of quantum circuits, and combining rule-based, search-based, and

resynthesis methods[59] to deliver a better trade-off between the

circuit quality and the optimization time.

Approximated optimization methods. The above optimization

methods focus on finding a better circuit with the exact same uni-

tary. However, in practice, quantum computers can tolerate a small

error in the unitary[40], and algorithms like quantum machine

learning and quantum variational algorithms can tolerate even

more. As a result, researchers have also developed approximated

optimization methods. QFast[61] and QSearch[29] apply numer-

ical optimizations to search for circuit decompositions that are

close to the desired unitary. Researchers have also developed ma-

chine learning-based methods for optimizing specific quantum

circuits[42, 50, 53] for variational or quantum machine learning

applications.

9 Discussion and Conclusion

This paper presents a parallel algorithm, called POPQC, for circuit

optimization and an implementation of the algorithm. The algo-

rithm is reasonably work efficient and incurs only a logarithmic

factor overhead over the lower bound and works well in practice.

The algorithm guarantees a notion of local optimality with respect

to the oracle used for optimizing small segments of the circuit. Due

to its efficiency, performance, and quality guarantees, our imple-

mentation delivers significant speedups over existing optimizers

without degrading optimization quality.

Acknowledgments

This research was supported by the following NSF grants CCF-

1901381, CCF-2115104, CCF-2119352, CCF-2107241. We are grateful

to Chameleon Cloud for providing the compute cycles needed for

the experiments.

References

[1] Umut A. Acar and Guy E. Blelloch. Algorithms: Parallel and Sequential. 2022.
http:www.algorithms-book.com.

[2] Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey, and Filip

Sieczkowski. Heartbeat scheduling: Provable efficiency for nested parallelism.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, pages 769–782, 2018.

281

http:www.algorithms-book.com

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA Pengyu Liu, Jatin Arora, Mingkuan Xu, and Umut A. Acar

[3] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Oracle scheduling: Con-

trolling granularity in implicitly parallel languages. In ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 499–518, 2011.

[4] Matthew Amy. Formal methods in quantum circuit design. 2019.

[5] Matthew Amy, Dmitri Maslov, and Michele Mosca. Polynomial-time t-depth

optimization of clifford+ t circuits via matroid partitioning. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 33(10):1476–1489,
2014.

[6] Jatin Arora, Sam Westrick, and Umut A. Acar. Provably space efficient parallel

functional programming. In Proceedings of the 48th Annual ACM Symposium on
Principles of Programming Languages (POPL), 2021.

[7] Jatin Arora, Sam Westrick, and Umut A. Acar. Efficient parallel functional

programming with effects. Proc. ACM Program. Lang., 7(PLDI):1558–1583, 2023.
[8] Jatin Arora, Mingkuan Xu, Sam Westrick, Pengyu Liu, Dantong Li, Yongshan

Ding, and Umut A Acar. Local optimization of quantum circuits (extended

version). arXiv preprint arXiv:2502.19526, 2025.
[9] Chandan Bandyopadhyay, Robert Wille, Rolf Drechsler, and Hafizur Rahaman.

Post synthesis-optimization of reversible circuit using template matching. In

2020 24th International Symposium on VLSI Design and Test (VDAT), pages 1–4.
IEEE, 2020.

[10] Paul Benioff. The computer as a physical system: A microscopic quantum me-

chanical hamiltonian model of computers as represented by turing machines.

Journal of Statistical Physics, 22:563–591, 05 1980.
[11] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed,

Vishnu Ajith, M Sohaib Alam, Guillermo Alonso-Linaje, B AkashNarayanan, Ali

Asadi, et al. Pennylane: Automatic differentiation of hybrid quantum-classical

computations. arXiv preprint arXiv:1811.04968, 2018.
[12] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, NathanWiebe,

and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–202, 2017.
[13] Andrew M Childs, Robin Kothari, and Rolando D Somma. Quantum algorithm

for systems of linear equations with exponentially improved dependence on

precision. SIAM Journal on Computing, 46(6):1920–1950, 2017.
[14] Marc G Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi, and Costin

Iancu. Towards optimal topology aware quantum circuit synthesis. In 2020 IEEE
International Conference on Quantum Computing and Engineering (QCE), pages
223–234. IEEE, 2020.

[15] Sepehr Ebadi, Tout T Wang, Harry Levine, Alexander Keesling, Giulia Semeghini,

Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho,

et al. Quantum phases of matter on a 256-atom programmable quantum simulator.

Nature, 595(7866):227–232, 2021.
[16] Richard P Feynman. Simulating physics with computers. In Feynman and

computation, pages 133–153. CRC Press, 2018.

[17] Thomas Fösel, Murphy Yuezhen Niu, Florian Marquardt, and Li Li. Quan-

tum circuit optimization with deep reinforcement learning. arXiv preprint
arXiv:2103.07585, 2021.

[18] Brett Giles and Peter Selinger. Remarks on matsumoto and amano’s normal form

for single-qubit clifford+ t operators. arXiv preprint arXiv:1312.6584, 2013.
[19] Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T

Chong. Optimized quantum compilation for near-term algorithms with open-

pulse. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 186–200. IEEE, 2020.

[20] Lov K Grover. A fast quantum mechanical algorithm for database search. arXiv
preprint quant-ph/9605043, 1996.

[21] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for

linear systems of equations. Physical review letters, 103(15):150502, 2009.
[22] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. A

verified optimizer for quantum circuits. Proceedings of the ACM on Programming
Languages, 5(POPL):1–29, 2021.

[23] Raban Iten, Romain Moyard, Tony Metger, David Sutter, and Stefan Woerner.

Exact and practical pattern matching for quantum circuit optimization. ACM
Transactions on Quantum Computing, 3(1):1–41, 2022.

[24] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo. Opti-

mization of quantum circuit mapping using gate transformation and commuta-

tion. Integration, 70:43–50, 2020.
[25] Dominik Janzing, Pawel Wocjan, and Thomas Beth. Identity check is qma-

complete, 2003.

[26] Navin Khaneja and Steffen J Glaser. Cartan decomposition of su (2n) and control

of spin systems. Chemical Physics, 267(1-3):11–23, 2001.
[27] Aleks Kissinger and John van de Wetering. PyZX: Large Scale Automated Dia-

grammatic Reasoning. In Bob Coecke and Matthew Leifer, editors, Proceedings

16th International Conference on Quantum Physics and Logic, Chapman Univer-

sity, Orange, CA, USA., 10-14 June 2019, volume 318 of Electronic Proceedings in
Theoretical Computer Science, pages 229–241. Open Publishing Association, 2020.

[28] Morten Kjaergaard, Mollie E Schwartz, Jochen Braumüller, Philip Krantz, Joel

I-J Wang, Simon Gustavsson, and William D Oliver. Superconducting qubits:

Current state of play. Annual Review of Condensed Matter Physics, 11(1):369–395,
2020.

[29] Costin Lancu, Marc Davis, Ethan Smith, and USDOE. Quantum search compiler

(qsearch) v2.0, version v2.0, 10 2020.

[30] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. Qasmbench:

A low-level qasm benchmark suite for nisq evaluation and simulation. arXiv
preprint arXiv:2005.13018, 2021.

[31] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for

nisq-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 1001–1014, 2019.

[32] Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia.

Quarl: A learning-based quantum circuit optimizer. Proceedings of the ACM on
Programming Languages, 8(OOPSLA1):555–582, 2024.

[33] Pengyu Liu, Jatin Arora, Mingkuan Xu, and Umut A. Acar. Popqc: Parallel opti-

mization for quantum circuits (extended version). arXiv preprint arXiv:2506.13720,
2025.

[34] Aaron Lye, Robert Wille, and Rolf Drechsler. Determining the minimal number

of swap gates for multi-dimensional nearest neighbor quantum circuits. In The
20th Asia and South Pacific Design Automation Conference, pages 178–183. IEEE,
2015.

[35] Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu, and Aws

Albarghouthi. Qubit mapping and routing via maxsat. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 1078–1091. IEEE,
2022.

[36] Christopher Monroe, Wes C Campbell, L-M Duan, Z-X Gong, Alexey V Gorshkov,

Paul W Hess, Rajibul Islam, Kihwan Kim, Norbert M Linke, Guido Pagano, et al.

Programmable quantum simulations of spin systems with trapped ions. Reviews
of Modern Physics, 93(2):025001, 2021.

[37] S. A. Moses, C. H. Baldwin, M. S. Allman, R. Ancona, L. Ascarrunz, C. Barnes,

J. Bartolotta, B. Bjork, P. Blanchard, M. Bohn, J. G. Bohnet, N. C. Brown, N. Q.

Burdick, W. C. Burton, S. L. Campbell, J. P. Campora III au2, C. Carron, J. Cham-

bers, J. W. Chan, Y. H. Chen, A. Chernoguzov, E. Chertkov, J. Colina, J. P. Curtis,

R. Daniel, M. DeCross, D. Deen, C. Delaney, J. M. Dreiling, C. T. Ertsgaard, J. Es-

posito, B. Estey, M. Fabrikant, C. Figgatt, C. Foltz, M. Foss-Feig, D. Francois, J. P.

Gaebler, T. M. Gatterman, C. N. Gilbreth, J. Giles, E. Glynn, A. Hall, A. M. Hankin,

A. Hansen, D. Hayes, B. Higashi, I. M. Hoffman, B. Horning, J. J. Hout, R. Jacobs,

J. Johansen, L. Jones, J. Karcz, T. Klein, P. Lauria, P. Lee, D. Liefer, C. Lytle, S. T.

Lu, D. Lucchetti, A. Malm, M. Matheny, B. Mathewson, K. Mayer, D. B. Miller,

M. Mills, B. Neyenhuis, L. Nugent, S. Olson, J. Parks, G. N. Price, Z. Price, M. Pugh,

A. Ransford, A. P. Reed, C. Roman, M. Rowe, C. Ryan-Anderson, S. Sanders, J. Sed-

lacek, P. Shevchuk, P. Siegfried, T. Skripka, B. Spaun, R. T. Sprenkle, R. P. Stutz,

M. Swallows, R. I. Tobey, A. Tran, T. Tran, E. Vogt, C. Volin, J. Walker, A. M. Zolot,

and J. M. Pino. A race track trapped-ion quantum processor, 2023.

[38] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and

Margaret Martonosi. Noise-adaptive compiler mappings for noisy intermediate-

scale quantum computers. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 1015–1029. ACM, 2019.

[39] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov.

Automated optimization of large quantum circuits with continuous parameters.

npj Quantum Information, 4(1), may 2018.

[40] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum

information, 2002.

[41] Natalia Nottingham, Michael A Perlin, Ryan White, Hannes Bernien, Frederic T

Chong, and Jonathan M Baker. Decomposing and routing quantum circuits under

constraints for neutral atom architectures. arXiv preprint arXiv:2307.14996, 2023.
[42] Mateusz Ostaszewski, Lea M Trenkwalder, Wojciech Masarczyk, Eleanor Scerri,

and Vedran Dunjko. Reinforcement learning for optimization of variational

quantum circuit architectures. Advances in Neural Information Processing Systems,
34:18182–18194, 2021.

[43] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,

Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue

solver on a photonic quantum processor. Nature communications, 5:4213, 2014.
[44] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79,

2018.

[45] John Preskill. Beyond nisq: The megaquop machine, 2024.

[46] Pascal Scholl, Michael Schuler, Hannah J Williams, Alexander A Eberhar-

ter, Daniel Barredo, Kai-Niklas Schymik, Vincent Lienhard, Louis-Paul Henry,

Thomas C Lang, Thierry Lahaye, et al. Quantum simulation of 2d antiferromag-

nets with hundreds of rydberg atoms. Nature, 595(7866):233–238, 2021.
[47] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction to

quantum machine learning. Contemporary Physics, 56(2):172–185, 2015.
[48] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I Schuster, Henry

Hoffmann, and Frederic T Chong. Optimized compilation of aggregated in-

structions for realistic quantum computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 1031–1044. ACM, 2019.

[49] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and

factoring. In Proceedings 35th annual symposium on foundations of computer

282

POPQC: Parallel Optimization for Quantum Circuits SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

science, pages 124–134. Ieee, 1994.
[50] Sukin Sim, Jonathan Romero, Jérôme F Gonthier, and Alexander A Kunitsa. Adap-

tive pruning-based optimization of parameterized quantum circuits. Quantum
Science and Technology, 6(2):025019, 2021.

[51] Swamit S Tannu and Moinuddin K Qureshi. Not all qubits are created equal: a

case for variability-aware policies for nisq-era quantum computers. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 987–999. ACM, 2019.

[52] Robert R Tucci. An introduction to cartan’s kak decomposition for qc program-

mers. arXiv preprint quant-ph/0507171, 2005.
[53] Hanrui Wang, Yongshan Ding, Jiaqi Gu, Yujun Lin, David Z Pan, Frederic T

Chong, and Song Han. Quantumnas: Noise-adaptive search for robust quantum

circuits. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 692–708. IEEE, 2022.

[54] SamWestrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. Disentanglement

in nested-parallel programs. In Proceedings of the 47th Annual ACM Symposium
on Principles of Programming Languages (POPL), 2020.

[55] Robert Wille, Rod VanMeter, and Yehuda Naveh. Ibm’s qiskit tool chain: Working

with and developing for real quantum computers. In 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 1234–1240. IEEE, 2019.

[56] Xin-Chuan Wu, Marc Grau Davis, Frederic T Chong, and Costin Iancu. Qgo:

Scalable quantum circuit optimization using automated synthesis. arXiv preprint
arXiv:2012.09835, 2020.

[57] Xin-Chuan Wu, Dripto M Debroy, Yongshan Ding, Jonathan M Baker, Yuri Alex-

eev, Kenneth R Brown, and Frederic T Chong. Tilt: Achieving higher fidelity

on a trapped-ion linear-tape quantum computing architecture. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA),
pages 153–166. IEEE, 2021.

[58] Amanda Xu, Abtin Molavi, Lauren Pick, Swamit Tannu, and Aws Albarghouthi.

Synthesizing quantum-circuit optimizers. Proc. ACM Program. Lang., 7(PLDI),
jun 2023.

[59] Amanda Xu, Abtin Molavi, Swamit Tannu, and Aws Albarghouthi. Optimizing

quantum circuits, fast and slow. arXiv preprint arXiv:2411.04104, 2024.
[60] Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Auguste Hirth,

Henry Ma, Jens Palsberg, Alex Aiken, Umut A. Acar, and Zhihao Jia. Quartz:

Superoptimization of quantum circuits. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
PLDI 2022, page 625–640, New York, NY, USA, 2022. Association for Computing

Machinery.

[61] Ed Younis, Koushik Sen, Katherine Yelick, and Costin Iancu. Qfast: Conflating

search and numerical optimization for scalable quantum circuit synthesis, 2021.

283

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum States
	2.2 Gates and Circuits
	2.3 Quantum Circuit Optimization
	2.4 Parallelism Model

	3 A Parallel Data Structure for Quantum Circuits
	4 Algorithm
	5 Efficiency Analysis
	6 Local Optimality of POPQC
	7 Implementation and Evaluation
	7.1 Implementation
	7.2 Benchmarks
	7.3 Evaluation Setup
	7.4 Our Optimizer is Orders of Magnitude Faster than VOQC
	7.5 Local Optimality Unlocks Significant Efficiency
	7.6 Our Optimizer Scales Well as Number of Cores Increases
	7.7 Our Optimizer is Work Efficient
	7.8 Our Optimizer is Flexible

	8 Related Work
	8.1 Optimization Objectives
	8.2 Optimization Techniques

	9 Discussion and Conclusion
	References

