
Local Optimization of Quantum Circuits

Jatin Arora
∗

Carnegie Mellon University
jatina29@gmail.com

Mingkuan Xu

Carnegie Mellon University
mingkuan@cmu.edu

Sam Westrick

New York University
shw8119@nyu.edu

Pengyu Liu

Carnegie Mellon University
pengyuliu@cmu.edu

Dantong Li

Yale University
dantong.li@yale.edu

Yongshan Ding

Yale University
yongshan.ding@yale.edu

Umut A. Acar

Carnegie Mellon University
umut@cmu.edu

Abstract—Recent advances in quantum architectures and
computing have motivated the development of new opti-
mizing compilers for quantum programs or circuits. Even
though steady progress has been made, existing quantum
optimization techniques remain asymptotically and practi-
cally inefficient. Because many global quantum circuit opti-
mization problems belong to the complexity class QMA (the
quantum analog of NP) [51], it is not clear whether efficiency
guarantees can be achieved.

In this paper, we present an algorithm that achieves
efficiency by aiming at a form of local optimality rather
than global optimality. Our local-optimization algorithm cuts
a circuit into subcircuits, optimizes each subcircuit with
the specified oracle optimizer, and melds the subcircuits
by optimizing across the cuts lazily as needed. To prove
efficiency, we show that, under some assumptions, the main
optimization phase of the algorithm requires a linear num-
ber of calls to the oracle optimizer. Our empirical results
show that our local-optimization algorithm can outperform
existing optimizers significantly, by more than an order of
magnitude on average. Perhaps surprisingly, the algorithm
achieves these improvements without noticeable degradation
in optimization quality. These results show that local opti-
mization can be effective for optimizing quantum circuits.

Index Terms—Optimization methods, partitioning algo-
rithms, quantum circuit.

I. Introduction

Quantum computing holds the potential to solve problems

in fields such as chemistry simulation [20], [8], optimiza-

tion [14], [56], cryptography [67], and machine learning [9],

[64] that can be very challenging for classical computing

techniques. Key to realizing the advantage of quantum com-

puting in these and similar fields is achieving the scale

of thousands of qubits and millions of quantum operations

(a.k.a., gates), often with high fidelity (minimal error) [32],

[23], [1]. Over the past decade, the potential of quantum

computing and the challenges of scaling it have motivated

much work on both hardware and software. On the hard-

ware front, quantum computers based on superconducting

circuits [39], trapped ions [48], [49], and Rydberg atom

arrays [19], [63] have advanced rapidly, scaling to hundreds

of qubits and achieving entanglement fidelity over 99%. On

the software front, a plethora of programming languages,

optimizing compilers, and run-time environments have been

∗
Currently at Amazon Web Services. This work was completed while at

Carnegie Mellon University.

proposed, both in industry and in academia (e.g., [65], [27],

[54], [51], [69], [10], [31], [81], [82], [79], [58], [73]).

Due to the limitations of modern quantum hardware and

the need for scaling the hardware to a larger number of

gates, optimization of quantum programs or circuits remain

key to realizing the potential of quantum computing. The

problem, therefore, has attracted significant research. Starting

with the fact that global optimization of circuits is QMA

hard and therefore unlikely to succeed, Nam et al. developed

a set of heuristics for optimizing quantum programs or

circuits [51]. Their approach takes at least quadratic time

in the number of gates in the circuit, making it difficult

to scale to larger circuits, consisting for example hundreds

of thousands of gates. In followup work Hietala et al. [31]

presented a verified implementation of Nam et al.’s approach.

In more recent work Xu et al. [79] presented techniques for

automatically discovering peephole optimizations (instead of

human-generated heuristics) and applying them to optimize a

circuit. Xu et al.’s optimization algorithm, however, requires

exponential time in the number of the optimization rules

and make no quality guarantees due to pruning techniques

used for controlling space and time consumption. In follow-

up work Xu et al. [78] and Li et al. [43] improve on Quartz’s

run-time. All of these optimizers can take hours to optimize

moderately large circuits (Section V) and cannot make any

quality guarantees.

Given this state of the art and the fact that global opti-

mality is unlikely to be efficiently attainable due to its QMA

hardness [51], we ask: is it possible to improve efficiency
without harming quality?
In this work, we answer this question affirmatively and

thus bridge quality and efficiency. To ensure generality, we

formulate local optimality (“segment optimality”) in an “un-

opinionated” fashion in the sense that we do not make any

assumptions about which optimizations may be performed

by the local rewrites. Instead, we defer all optimization

decisions to an abstract oracle that can be instantiated with

an available optimizer as desired. Intuitively, each segment

of the circuit should be optimal with respect to the oracle.

We present a local-optimization algorithm, called OAC
(Optimize-and-Compact) that takes a circuit and optimizes

it in rounds, each of which consists of an optimization

and compaction phase. The optimization phase takes the



circuit and outputs a segment-optimal version of it, and

the compaction phase compacts the circuit by eliminating

“gaps” left by the optimization, potentially enabling new

optimizations. The OAC algorithm repeats the optimization

and compaction phases until convergence, where no more

optimizations may be found.

To ensure efficiency, the optimization phase of OAC
partitions the circuit hierarchically into smaller subcircuits,

optimizes each subcircuit independently, and combines the

optimized subcircuits into a locally optimal circuit. To opti-

mize small segments, the algorithm uses any chosen oracle

and does not make any restrictions on the optimizations that

may be performed by the oracle. The approach can therefore

be used in conjunction with many existing optimizers that

support different gate sets and cost functions. By partitioning

the circuit into smaller circuits, the algorithm ensures that

most of the optimizations take place in the context of small

circuits, which then helps reduce the total optimization cost.

But optimizing subcircuits independently can miss crucial

optimizations. We therefore propose a melding technique

to “meld” the optimized subcircuits by optimizing over the

cuts. To ensure efficiency, our melding technique starts at

the cut, optimizes over the cut, and proceeds deeper into the

circuit only as needed.

The correctness and efficiency properties of our cut-and-

meld algorithm are far from obvious. In particular, it may

appear possible that 1) the algorithm misses optimizations

and 2) the cost of meld operations grows large. We show that

none of these are possible and establish that the optimiza-

tion algorithm guarantees segment optimality and accepts a

linear time cost bound in terms of the call to oracle. For

the efficiency bound, we use an “output-sensitive” analysis

technique that charges costs not only to input size but also

to the cost improvement, i.e., reduction in the cost (e.g.,

number of gates) between the input and the output. Even

though the algorithm can in principle take a linear number of

rounds, this appears unlikely, and we observe in practice that

it requires very few rounds (e.g., less than four on average).

We evaluate the effectiveness of the OAC algorithm on a

variety of quantum circuits. Our experiments show that our

OAC algorithm improves efficiency, by more than one order

of magnitude (on average), and closely matches or improves

optimization quality. These results show that local optimality

is a reasonably strong optimization criterion and our cut-and-

meld algorithm can be an efficient approach to optimizing

circuits. Because our approach is generic, and can be tooled

to use existing optimizers, it can be used to amplify the

effectiveness of existing optimizers to optimize large circuits.

Specific contributions of the paper include the following.

• An algorithm OAC for optimizing quantum circuits

locally.

• Proof of correctness of OAC.
• Run-time complexity bounds and their proofs for the

OAC algorithm.

• Implementation and a comprehensive empirical eval-

uation of OAC, demonstrating the benefits of local

optimality and giving experimental evidence for the

practicality of the approach.

We note that due to space restrictions, we have omit-

ted proofs of correctness and efficiency; we provide these

proofs and additional experiments in the extended version

on arXiv [5].

II. Background

In this section, we provide some quantum computing

background that is relevant for the paper.

a) Quantum States, Gates, and Circuits: The state of a

quantum bit (or qubit) is represented as a linear superpo-

sition, |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, of the single-qubit basis vectors

|0⟩ = [1 0]T and |1⟩ = [0 1]𝑇 , for 𝛼, 𝛽 ∈ C with normaliza-

tion constraint |𝛼 |2 + |𝛽 |2 = 1. A valid transformation from

one quantum state to another is described as a 2×2 complex

unitary matrix, 𝑈, where 𝑈†𝑈 = 𝐼 . An 𝑛-qubit quantum state

is a superposition of 2𝑛 basis vectors, |𝜓⟩ = ∑
𝑖∈{0,1}𝑛 𝛼𝑖 |𝑖⟩,

and its transformation is a 2𝑛 × 2𝑛 unitary matrix.

A quantum circuit is an ordered sequence of quantum logic

gates selected from a predefined gate set. Each quantum gate
represents a unitary matrix that transforms the state of one,

two, or a few qubits. Given a circuit 𝐶, the size (|𝐶 |) is the

total number of gates used, while the width (𝑛) represents

the number of qubits. The depth (𝑑) is the number of circuit

layers, wherein each qubit participates in at most one gate.

b) Circuit Representation: Quantum circuits can be rep-

resented with many data structures such as graphs, matrices,

text, and layer diagrams. In this paper, we represent circuits

with a sequence of layers, where each layer contains gates

that may act at the same time step on their respective qubits.

We use the layer representation to define and prove the

circuit quality guaranteed by our optimization algorithm. In

addition to the layer representation, our implementation uses

the QASM (quantum assembly language) representation. The

QASM is a standard format which orders all gates of the

circuit in a way that respects the sequential dependencies

between gates. It is supported by almost all quantum comput-

ing frameworks and enables our implementation to interact

with off-the-shelf tools.

c) Quantum Circuit Synthesis and Optimization: The

goal of circuit synthesis is to decompose the desired uni-

tary transformation into a sequence of basic gates that are

physically realizable within the constraints of the underlying

quantum hardware architecture. Quantum circuits for the

same unitary transformation can be represented in multiple

ways, and their efficiency can vary when executed on real

quantum devices. Circuit optimization aims to take a given

quantum circuit as input and produce another quantum cir-

cuit that is logically equivalent but requires fewer resources

or shorter execution time, such as a reduced number of

gates or a reduced circuit depth. Synthesizing and optimizing

large circuits are known to be challenging due to their

high dimensionality. For example, as the number of qubits

in a quantum circuit increases, the degree of freedom in

the unitary transformation grows exponentially, leading to



higher synthesis and optimization complexity. In particular,

global optimization of quantum circuits is QMA-hard [35].

III. Circuit Syntax and Semantics

We present our circuit language called Laqe (Layered

Quantum Representation) which represents a quantum circuit

as a sequence of layers. Figure 1 shows the abstract syntax

of the language. We let the variable 𝑞 denote a qubit, and 𝐺

denote a gate. For simplicity, we consider only unary gates

𝑔(𝑞) and binary gates 𝑔(𝑞1, 𝑞2), where 𝑔 is a gate name in

the desired gate set. These definitions can be easily extended

to support gates of any arity.

A Laqe circuit 𝐶 consists of a sequence of layers

⟨𝐿0, . . . , 𝐿𝑛−1⟩, where each layer 𝐿𝑖 is a set of gates that

are applied to qubits in parallel. The circuit is well formed
if the gates of every layer act on disjoint qubits, i.e., no layer

can apply multiple gates to the same qubit. As a shorthand,

we write 𝐺1 ⋄ 𝐺2 to denote that gates 𝐺1 and 𝐺2 act on

disjoint qubits, i.e., qubits(𝐺1)∩qubits(𝐺2) = ∅. We similarly

write 𝐿1 ⋄ 𝐿2 for the same condition on layers. Note that

we implicitly assume well-formedness throughout the section

because it is preserved by all our rewriting rules.

We define the length of a Laqe circuit as the number of

layers, and the size of a circuit 𝐶, denoted |𝐶 |, as the total

number of gates. A segment is a contiguous subsequence of

layers of the circuit, and a k-segment is a segment of length

𝑘 . We use the Python-style notation 𝐶 [𝑖 : 𝑗] to represent a

segment containing layers ⟨𝐿𝑖 , . . . , 𝐿 𝑗−1⟩ from circuit 𝐶. In

the case of overflow (where either 𝑖 < 0 or 𝑗 > length(𝐶)),
we define 𝐶 [𝑖 : 𝑗] = 𝐶 [max(0, 𝑖) : min( 𝑗 , length(𝐶))].
Two circuits 𝐶 and 𝐶′

can be concatenated together as

𝐶;𝐶′
, creating a circuit containing the layers of 𝐶 followed

by layers of 𝐶′
. Formally, if 𝐶 = ⟨𝐿0 . . . 𝐿𝑛−1⟩ and 𝐶′ =

⟨𝐿′
0 . . . 𝐿

′
𝑚−1⟩, then 𝐶;𝐶′ = ⟨𝐿0 . . . 𝐿𝑛−1, 𝐿

′
0 . . . 𝐿

′
𝑚−1⟩.

IV. Local Optimization Algorithm

Given an oracle to optimize small circuits, it might seem

straightforward to implement an algorithm to scale it to

larger circuits by simply applying the oracle on all small

segments until it converges. However, such an algorithm is

not efficient, because searching for a segment to optimize

requires linear time in the size of the circuit (both in

worst and the average case), yielding a quadratic bound for

optimization. For improved efficiency, it is crucial to reduce

the search time needed to find a segment that would benefit

from optimization.

Our algorithm, called OAC, controls search time by using a

circuit cutting-and-melding technique. The algorithm cuts the

circuit hierarchically into smaller subcircuits, optimizes each

subcircuit independently. The hierarchical cutting naturally

reduces the search time for the optimizations by ensuring

that most of the optimizations take place in the context

of small circuits. Because the algorithm optimizes each

subcircuit independently, it can miss crucial optimizations.

To compensate for this, the algorithm melds the optimized

subcircuits and optimizes further the melded subcircuits

starting with the seam, or the boundary between the two

subcircuits. The meld operation guarantees local optimality

and does so efficiently by first optimizing the seam and

further optimizing into each subcircuit only if necessary.

By melding locally optimal subcircuits, the algorithm can

guarantee that the subcircuits or any of their “untouched”

portions (what it means to be “untouched” is relatively

complex) remain optimal. We make this intuitive explanation

precise by proving that the algorithm yields a locally optimal

circuit. We note that circuit cutting techniques have been

studied for the purposes of simulating quantum circuits on

classical hardware [55], [70], [12]. We are not aware of prior

work on circuit melding techniques that can lazily optimize

across circuit cuts.

A. The algorithm

Figure 2 shows the pseudocode for our algorithm. The al-

gorithm (OAC) organizes the computation into rounds, where

each round corresponds to a recursive invocation of OAC.

A round consists of a compaction phase (via the function

compact) and a segment-optimization phase, via the function

segopt. The rounds repeat until convergence, i.e., until no

more optimization is possible (at which point the final circuit

is guaranteed to be locally optimal). As the terminology

suggests, the segment optimization phase always yields a

segment-optimal circuit, where each and every segment is

optimal (as defined by our rewriting semantics). Compaction

rounds ensure that the algorithm does not miss optimization

opportunities that arise due to compaction. We also present

a relaxed version of our algorithm that stops early when a

user-specified convergence threshold 0 ≤ 𝜖 ≤ 1, is reached.
Function segopt. The function segopt takes a circuit 𝐶

and produces a segment optimal output. A circuit is segment-
optimal if each and every Ω-segment of the circuit is optimal

for the given oracle and cost function. To achieve this, it uses

a divide-and-conquer strategy to cut the circuit hierarchically

into smaller and smaller circuits: it splits the circuit into

the subcircuits 𝐶1 and 𝐶2, optimizes each recursively, and

then calls meld on the resulting circuits to join them back

together without losing segment optimality. This recursive

splitting continues until the circuit has been partitioned into

sufficiently small segments, specifically where each piece is

at most 2Ω in length. For such small segments, the function

directly uses the oracle and obtains optimal segments.

Function meld. Figure 2 (right) presents the pseudocode

of the meld function. The function takes segment-optimal

inputs 𝐶1 and 𝐶2 and returns a segment-optimal circuit that

is functionally equivalent to the concatenation of inputs.

Given that the inputs 𝐶1 and 𝐶2 are segment optimal, all

Ω-segments that lie completely within 𝐶1 or 𝐶2 are already

optimal. Therefore, the function only considers and optimizes

“boundary segments” which have some layers from circuit 𝐶1
and other layers from circuit 𝐶2.

To optimize segments at the boundary, the function creates

a “super segment”, named 𝑊 , by concatenating the last Ω

layers of circuit 𝐶1 with the first Ω layers of circuit 𝐶2. The



Qubit 𝑞

Gate Name 𝑔

Gate 𝐺 ::= 𝑔 (𝑞) | 𝑔 (𝑞1 , 𝑞2 )
Layer 𝐿 ::= {𝐺0 , 𝐺1 , . . . , 𝐺𝑡−1 }
Circuit 𝐶 ::= ⟨𝐿0 , 𝐿1 , . . . 𝐿𝑛−1 ⟩

qubits(𝐺) ≜
{
{𝑞}, 𝐺 = 𝑔 (𝑞)
{𝑞1 , 𝑞2 }, 𝐺 = 𝑔 (𝑞1 , 𝑞2 )

qubits(𝐿) ≜
⋃
𝐺∈𝐿

qubits(𝐺)

𝐺1 ⋄ 𝐺2 ⇔ qubits(𝐺1 ) ∩ qubits(𝐺2 ) = ∅
𝐿1 ⋄ 𝐿2 ⇔ qubits(𝐿1 ) ∩ qubits(𝐿2 ) = ∅
𝐶 well-formed ⇔ ∀𝐿 ∈ 𝐶. ∀𝐺1 , 𝐺2 ∈ 𝐿. 𝐺1 ⋄ 𝐺2

Fig. 1: Syntax of Laqe and well-formed circuits.

1 Ω: int
2 oracle: circuit → circuit
3 cost: circuit → int
4 compact: circuit → circuit
5

6 def OAC(𝐶 ):
7 𝐶′ = segopt(compact(𝐶))
8 if 𝐶′ = 𝐶:
9 return 𝐶

10 else:
11 return OAC(𝐶′ )

12 def segopt(𝐶):
13 𝑑 = length(𝐶 )
14 if 𝑑 ≤ 2Ω:
15 𝐶′ = oracle(𝐶 )
16 if cost(𝐶′ ) < cost(𝐶 ):
17 return 𝐶′

18 else:
19 return 𝐶

20 else:
21 𝑚 = ⌊𝑑/2⌋
22 𝐶1 = 𝐶 [0 : 𝑚]
23 𝐶2 = 𝐶 [𝑚 : 𝑑 ]
24 𝐶′

1 = segopt(𝐶1)
25 𝐶′

2 = segopt(𝐶2)
26 return meld(𝐶′

1, 𝐶
′
2 )

27 def meld(𝐶1, 𝐶2 ):
28 𝑑1 = length(𝐶1)
29 𝑑2 = length(𝐶2)
30 𝑊 = 𝐶1 [𝑑1 − Ω : 𝑑1 ] +𝐶2 [0 : Ω]
31 𝑊 ′ = oracle(𝑊 )
32 if cost(𝑊 ′ ) = cost(𝑊 ):
33 return (𝐶1;𝐶2 ) // concatenate
34 else:
35 𝑀 = meld(𝐶1 [0 : 𝑑1 − Ω], 𝑊 ′ )
36 return meld(𝑀,𝐶2 [Ω : 𝑑2 ])

Fig. 2: Algorithm OAC produces locally optimal circuits with respect to a given oracle, cost, and segment length Ω. To

achieve local optimality, OAC only uses the oracle on small segments of length 2Ω. The algorithm repeatedly optimizes and

compacts the circuit until convergence. The function segopt() implements our optimization algorithm and uses meld() to

efficiently produce segment optimal circuits.

function denotes this concatenation as 𝐶1 [𝑑1−Ω : 𝑑1]+𝐶2 [0 :
Ω] (see line 30). The meld function calls the oracle on 𝑊 and

retrieves the 𝑊 ′
, which is guaranteed to be segment-optimal

because it is returned by the oracle. The meld function then

considers the costs of 𝑊 and 𝑊 ′
.

If the costs of 𝑊 and 𝑊 ′
are identical, then 𝑊 is already

segment optimal. Consequently, all Ω-segments at the bound-

ary of 𝐶1 and 𝐶2 are also optimal. The key point is that the

“super segment” 𝑊 encompasses all possible Ω-segments at

the boundary of 𝐶1 and 𝐶2. To see this, let’s choose an Ω-

segment at boundary, which takes the last 𝑖 > 0 layers of

circuit 𝐶1 and the first 𝑗 > 0 layers from of circuit 𝐶2;
we can write this as 𝐶1 [𝑑1 − 𝑖 : 𝑑1] + 𝐶2 [0 : 𝑗], where
𝑑1 is the number of layers in 𝐶1. Given that this is an

Ω−segment and has 𝑖 + 𝑗 layers, we get that 𝑖 + 𝑗 = Ω and

𝑖 < Ω and 𝑗 < Ω. Now observe that our chosen segment

𝐶1 [𝑑1 − 𝑖 : 𝑑1] + 𝐶2 [0 : 𝑗] is contained within the super

segment 𝑊 = 𝐶1 [𝑑1 − Ω : 𝑑1] + 𝐶2 [0 : Ω] (line 30), because

𝑖 < Ω and 𝑗 < Ω. Given that 𝑊 is segment optimal, our

chosen segment is also optimal (relative to the oracle).

Returning to the meld algorithm, consider the case where

the segment 𝑊 ′
improves upon the segment 𝑊 . In this case,

meld incorporates 𝑊 ′
into the circuit and propagates this

change to the neighboring layers. To do this, meld works

with three segment optimal circuits: circuit 𝐶1 [0 : 𝑑1 − Ω],
which contains the first 𝑑1−Ω layers of circuit 𝐶1, is segment

optimal because 𝐶1 is segment optimal; the circuit 𝑊 ′
is

segment optimal because it was returned by the oracle; and

the circuit 𝐶2 [Ω : 𝑑2], which contains the last 𝑑2 −Ω layers

of circuit 𝐶2, is segment optimal because 𝐶2 is segment

optimal. Thus, we propagate the changes of window 𝑊 ′
, by

recursively melding these segment optimal circuits.

In Figure 2, the function meld first melds the remaining

layers of circuit 𝐶1 with the segment 𝑊 ′
, obtaining circuit 𝑀

(see line 35), and then melds the circuit 𝑀 with the remaining

layers of 𝐶2.

B. Meld Example
We present an example of how meld joins two circuits by

optimizing the “seam”, and does so “lazily”, as needed.

Figure 3 shows a three-step meld operation that identifies

optimizations at the boundary of two circuits. All the circuits

in the figure are expressed using the H gate (Hadamard gate),

the RZ gate (rotation around Z), and the two-qubit CNOT
gate (Controlled Not gate), which is represented using a dot

and an XOR symbol. We first provide background on the

optimizations used by meld and label them “Optimization

1” and “Optimization 2”. Optimization 1 shows that when

a CNOT gate is surrounded by four H gates, all of these

gates can replaced by a single CNOT gate whose qubits are

flipped. Optimization 2 shows that when two CNOT gates

are separated by a RZ gate as shown, they may be removed.

The steps in the figure describe a meld operation on the

two circuits separated by a dashed line, which represents

their seam. To join the circuits, the meld operation proceeds

outwards in both directions and optimizes the boundary

segment, represented as a green box with solid lines. The



Rz (θ)Rz (θ)

<latexit sha1_base64="Y9dozFO2T98BvnLl/Vrpps2U824=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0s4m7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP7ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcCcI2h</latexit>q0

H

H

<latexit sha1_base64="hQrRdnmHcUm4onQky6I90Ij8VcU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0s4m7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcD9I2i</latexit>q1 H

H

Rz (θ) Rz (φ)

<latexit sha1_base64="Y9dozFO2T98BvnLl/Vrpps2U824=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0s4m7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP7ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcCcI2h</latexit>q0

<latexit sha1_base64="hQrRdnmHcUm4onQky6I90Ij8VcU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0s4m7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcD9I2i</latexit>q1 Rz (θ) Rz (φ)

<latexit sha1_base64="hQrRdnmHcUm4onQky6I90Ij8VcU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0s4m7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcD9I2i</latexit>q1 Rz (θ) Rz (φ)

<latexit sha1_base64="Y9dozFO2T98BvnLl/Vrpps2U824=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0s4m7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP7ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcCcI2h</latexit>q0
<latexit sha1_base64="Y9dozFO2T98BvnLl/Vrpps2U824=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0s4m7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP7ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcCcI2h</latexit>q0

<latexit sha1_base64="hQrRdnmHcUm4onQky6I90Ij8VcU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0s4m7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcD9I2i</latexit>q1 Rz (θ + φ)

H

H

H

H

Optimization 1

1

2

Optimization 2

3

Rz (θ) Rz (θ)

Fig. 3: The figure shows a three-step meld operation and

illustrates how it propagates optimizations at the boundary of

two optimal circuits. The figure shows specific optimizations

“1” and “2” at the top, and the optimization steps of meld to-

wards the bottom. Before the first step, two individual circuit

segments that are optimal are separated by a dashed line.

Each meld step considers a segment, represented by a box

with solid/dotted/shaded lines, and applies an optimization

to it, reducing the gate count. The first step focuses on the

boundary segment within the solid green box, overlapping

with both circuits, and applies “Optimization 1”. This step

introduces a flipped CNOT gate, which interacts with a

neighboring CNOT gate and triggers “Optimization 2” in the

purple dotted box. The third step merges two neighboring

rotation gates in the yellow shaded box.

meld applies Optimization 1 to the green segment and this

introduces a flipped CNOT gate.

The meld propagates this change in step 2, by considering

a new segment, which includes a neighboring layer. We

represent this segment by a purple box with dotted lines, and

it contains two CNOT gates, one of which was introduced

by the first optimization. The meld then applies Optimization

2, removing the CNOT gates and bringing the two rotation

gates next to each other. Note that Optimization 2 became

possible only because of Optimization 1, which introduced

the flipped the CNOT gate. In the final step, the meld

considers the segment represented by a yellow box with

shaded lines and performs a third optimization, merging the

two rotation gates. Overall, this sequence of optimizations,

at the boundary of two circuits, reduces the gate count by 7.

C. Correctness and Efficiency
Because our algorithm cuts the input circuit into subcir-

cuits and optimizes them independently, it is far from obvious

that its output is segment optimal. We prove that this is

indeed the case with Theorem 2 below. The reason for this

is the meld operation that is able to optimize circuit cuts. We

also prove, with Corollary 4, that even though meld behaves

dynamically and its cost varies from one circuit to another,

it remains efficient, in the sense that the number of calls

to oracle is always linear in the size of the circuit plus the

improvement in the cost. The proofs are on arXiv [5].

Lemma 1 (Segment optimality of meld). Given any additive
cost function and any segment optimal circuits 𝐶1 and 𝐶2,
the result of meld(𝐶1, 𝐶2) is a segment optimal circuit 𝐶 and
cost(𝐶) ≤ cost(𝐶1) + cost(𝐶2).

Theorem 2 (Segment optimality algorithm). For any circuit
𝐶, the function segopt(𝐶) outputs a segment optimal circuit.

Theorem 3 (Efficiency of segment optimization). The func-
tion segopt(𝐶) calls the oracle at most length(𝐶) + 2Δ times
on segments of length at most 2Ω, where Δ is the improvement
in the cost of the output.

Corollary 4 (Linear calls to the oracle). When optimizing for
gate count, our segopt(𝐶) makes a linear, 𝑂 (length(𝐶)+ |𝐶 |),
number of calls to the oracle.

We experimentally validate this corollary in Section V-E,

where we study the number of oracle calls made by our

algorithm for many circuits.

D. OAC*: controlling convergence

def OAC∗ ( 𝑓 , 𝐶 ):
𝐶′ = segopt(compact(𝐶 ))
if 1 − cost(𝐶′ )

cost(𝐶) ≤ 𝑓 :
return 𝐶′

else:
return OAC∗ ( 𝑓 , 𝐶′ )

Fig. 4: OAC∗
terminates

when the cost improve-

ment ratio falls below the

convergence threshold, 𝑓 .

We observe that, except for

the very last round, each round

of our OAC algorithm improves

the cost of the circuit. This raises

a practical question: how does

the improvement in cost vary

across rounds? For the vast ma-

jority of our evaluation, we ob-

served that nearly all optimiza-

tion (> 99%) occur in the first

round itself (see Section V-F);

the subsequent rounds have a

small impact on the quality. Based on this observation, we

propose OAC∗
which uses a convergence threshold 0 ≤ 𝜖 ≤ 1

to provide control over how quickly the algorithm converges.

The OAC∗
algorithm, in Figure 4, terminates as soon as the

cost is reduced by a smaller fraction than 𝑓 . For example,

if we measure cost as the number of gates and 𝜖 = 0.01,
then OAC∗

will terminate as soon as an optimization round

removes fewer than 1% of the remaining gates. Note that

OAC∗
gives two guarantees: 1) the output circuit is still

segment optimal, and 2) the fractional cost improvement in

the last round is less than 𝜖 .

V. Evaluation

We perform an empirical evaluation of the effectiveness of

the local optimality approach for quantum circuits. Specifi-

cally, we consider the following research questions (RQ).

RQ I: Is the OAC algorithm efficient and scalable?

RQ II: Is there any degradation in optimization quality?

How important is the meld operation?

RQ III: Is empirical performance consistent with the asymp-

totic bound?

RQ IV: What is the impact of segment size Ω and com-

paction on the local optimality and performance of OAC
algorithm?



To answer these questions, we implement the OAC algo-

rithm and integrate it with VOQC [31] as an oracle. We

chose VOQC because it is overall the best optimizer both in

terms of efficiency and quality of optimization among all the

optimizers that we have experimented with. We evaluate the

effectiveness of local optimality and OAC, on the Nam gate

set [51] and compare it with three state-of-the-art optimizers

Quartz, Queso, and VOQC [79], [78], [31].

In brief, these experiments show that our cut-and-meld

algorithm delivers fast optimization while closely matching

(within 0.1%) or improving the optimization quality for all cir-

cuits. These results show that the local optimality approach

can be effective in optimizing large quantum circuits, and can

help scale existing optimizers.

In the extended version on arXiv [5], we present results

for the Clifford+T gate set by using the FeynOpt [2], as an

oracle. We omitted these from the main body of the paper

due to space reasons but note that they are similar to the

results presented here in terms of efficiency and quality.

A. Implementation

To evaluate whether the OAC algorithm (Section IV) is

practically feasible, we implemented OAC in SML (Standard

ML), which comes with an optimizing compiler, MLton, that

can generate fast executables. Our implementation closely

follows the algorithm description. It uses the layered circuit

representation and represents circuits as an array of arrays,

where each array denotes a “layer” of the circuit. The

implementation splits and joins circuit segments by splitting

and joining the corresponding arrays, performing rounds of

optimization and compaction.

As described in Section IV-D, our implementation allows

user control over convergence through a specified conver-

gence ratio 𝜖 , where 0 ≤ 𝜖 ≤ 1. In the evaluation, we choose

𝜖 = 0.01, and analyze this choice in Section V-F1. Note that

regardless of 𝜖 , the implementation always guarantees that

output is segment optimal.

Our implementation is parametric in the oracle being used.

To allow calls to existing optimizers, we use MLton’s foreign

function interface, which supports cross-language calls to

C++. Specifically, to use an existing optimizer as an oracle,

we only need to provide a C++ wrapper that takes a circuit

in QASM format as input and returns an optimized circuit as

output.

B. Benchmarks and gate set

To evaluate our OAC algorithm, we consider a benchmark

suite of eight circuit families that include both near-term and

future fault-tolerant quantum algorithms. For each family, we

select circuits with different sizes by changing the number

of qubits. Our benchmark suite includes advanced quantum

algorithm such as Grover’s algorithm for unstructured

search [28], the HHL algorithm for solving linear systems

of equations [29], Shor’s algorithm for factoring large in-

tegers [67], and the Binary Welded Tree (bwt) quantum

walk algorithm [13]. In addition, our benchmarks include

near-term algorithms like Variational Quantum Eigensolver

(vqe) [56] and reversible arithmetic algorithms [4], [51] such

as boolean satisfaction problems (boolsat) and square-root

algorithm (sqrt).

The benchmark suite is written in the Nam gate set [51],

which consists of the Hadamard (H), Pauli-X (X), controlled-
NOT (CNOT), and Z-rotation (RZ) gates [51]. We preprocess

all our benchmarks with the Quartz preprocessor, which

merges rotation gates [79].

C. RQ I: Efficiency of OAC
To evaluate the efficiency of OAC, we use our OAC

implementation with VOQC as the oracle on segments of

size Ω = 40 and compare it to optimizers Quartz, Queso, and
VOQC. The approach works for many different settings of Ω

and we analyze the impact of Ω in Section V-F2 in detail. We

give each optimizer a 12-hour cut-off time (excluding time for

parsing and printing), to allow completion of the experiments

within a reasonable amount of time. Throughout, we omit

circuit-parsing time for timings of VOQC, whose parser

appears to scale superlinearly and can take significant time

(sometimes more than the optimization itself). This approach

is consistent with prior work on VOQC, which also excludes

parse time. When we use VOQC as an oracle of OAC,
however, we do include the parse time. This makes the

comparison somewhat unfair for OAC.
We evaluate the running times of these optimizers on

benchmarks from the Nam gate set with sizes ranging from

thousands to hundreds of thousands of gates.

Time Performance. Figure 5 show the time for our

OAC implementation (with VOQC oracle) compared against

Quartz, Queso, and VOQC. The figure includes eight families

of circuits, where horizontal lines separate families and

circuits within each family arranged body increasing qubit

and gate counts. The optimizers Quartz and Queso use the

maximum allotted time of 12 hours in all circuits, because

they explore a very large search space of all optimizations.

In a few cases, Queso throws an error or runs out of memory

(denoted “OOM”). The VOQC optimizer and our OAC opti-

mizer terminate much faster. Specifically, OAC optimizes all

circuits between 0.2 seconds and 3 hours depending on the

size, and VOQC finishes for all but six benchmarks within

12 hours. In the figure, we highlight in bold the fastest

optimizer(s) for each circuit.

Comparing between VOQC and our OAC, we observe the

following:

• Performance: OAC is the fastest across the board

except for vqe and except perhaps for the smallest

circuits in some families.

• Scalability: the gap between OAC and VOQC increases

as the circuit size increases, with OAC performing as

much as 100× faster in some cases.

• Overall: OAC is over an order of magnitude faster than

VOQC on average.

In the case of the vqe family, VOQC is consistently faster,

but as we discuss next, this comes at the cost of poorer



Time (s)

Benchmark Qubits Input Size Quartz Queso VOQC OAC
OAC

speedup

boolsat

28 75670 12h 12h 68.6 45.2 1.52

30 138293 12h 12h 307.3 98.7 3.11

32 262548 12h 12h 1266.2 213.6 5.93

34 509907 12h 12h 6151.0 462.8 13.29

bwt

17 262514 12h 12h 8303.1 524.9 15.82

21 402022 12h 12h 23236.8 1062.1 21.88

25 687356 12h 12h >12h 2341.7 > 18.45

29 941438 12h 12h >12h 3982.6 > 10.85

grover

9 8968 12h 12h 9.3 4.8 1.94

11 27136 12h 12h 106.5 20.8 5.12

13 72646 12h 12h 815.7 68.1 11.97

15 180497 12h 12h 5743.2 223.9 25.65

hhl

7 5319 12h 12h 0.3 0.9 0.27

9 63392 12h 12h 74.1 22.9 3.24

11 629247 12h 12h 14868.8 434.3 34.24

13 5522186 12h Parsing Error >12h 8243.1 > 5.24

shor

10 8476 12h OOM 8.8 5.2 1.70

12 34084 12h 12h 179.9 26.3 6.84

14 136320 12h 12h 3638.4 126.0 28.88

16 545008 12h 12h 70475.2 648.9 108.60

sqrt

42 79574 12h 12h 30.0 81.4 0.37

48 186101 12h 12h 191.2 268.0 0.71

54 424994 12h 12h 3946.5 679.8 5.81

60 895253 12h 12h >12h 1653.5 > 26.13

statevec

5 31000 12h OOM 1.6 4.3 0.38

6 129827 12h 12h 45.9 27.1 1.70

7 526541 12h 12h 1812.2 164.7 11.00

8 2175747 12h 12h >12h 1345.1 > 32.12

vqe

12 11022 12h 12h 0.2 1.2 0.13

16 22374 12h 12h 0.6 3.4 0.18

20 38462 12h 12h 2.0 7.0 0.29

24 59798 12h 12h 5.4 13.4 0.41

avg > 12.62

Fig. 5: The figure shows the running time in seconds of the four optimizers, using gate count as the cost metric. The column

"OAC Speedup" is the speed of our OAC with respect to VOQC, calculated as VOQC time divided by OAC time. These

measurements show that our optimizer OAC can be significantly faster, especially for large circuits (more than one order

of magnitude on average). These time improvements come without any loss in optimization quality. These results suggest

that local optimality approach to optimization of quantum circuits can be effective in practice.

optimization quality. For the small circuits of families hhl,
statevec, and sqrt, our optimizer is slower than VOQC.
This is due to the overheads that our implementation incurs

for (1) splitting and joining circuits, (2) serialization/dese-

rialization of input/output circuits for each oracle call, and

(3) various system-level calls needed to support calls to an

external oracle. For example, for the 7-qubit hhl benchmark

and the 42-qubit sqrt benchmark, we have measured that

at least 30% of the running time is spent parsing and

serializing/deserializing circuits.

D. RQ II: Optimization quality and importance of meld

We used VOQC as the oracle because it scales better and

achieves a better optimization quality than all other previous

works on all circuits presented in Figure 5. Figure 6 shows

the output quality (measured by gate count) of VOQC and

OAC for eight families of circuits.

For almost all families, we observe that the output quality

of OAC matches that of VOQC within 0.1% or improves it,

sometimes significantly. This shows that OAC scales better

without sacrificing optimization quality. Specifically, for the

vqe family, OAC optimizes better than VOQC. For example,

on the 24-qubit vqe circuit, OAC improves the gate count

by 60.6%, and VOQC improves the gate count by 54.9%.

To better understand what contributes to the optimization

quality, we perform an ablation experiment of the meld

operation. Specifically, we implement an ablating version of

our OAC, called OACMinus, that simply concatenates the

optimized subcircuits instead of the meld operation.

Figure 6 shows that the meld operation contributes an

improvement of 2.1% in absolute and 4.4% or relative terms.

Even though the percentage degradation due to ablation may

seem modest, it is significant, because

• each and every gate has a significant runtime and

fidelity cost on modern and near-term quantum com-

puters, and

• the optimization quality does not decrease uniformly: in

some circuit families, such as vqe, the ablating version

is more than 5% worse in absolute and 12% in relative

terms.

Due to these differences the ablating version (without the



Optimizer

Benchmark Qubits Input Size VOQC OAC OACMinus

boolsat

28 75670 -83.2% -83.7% -83.0%

30 138293 -83.3% -83.7% -83.1%

32 262548 -83.3% -83.5% -83.1%

34 509907 -83.3% -83.4% -83.1%

bwt

17 262514 -30.0% -31.1% -28.3%

21 402022 -38.4% -40.0% -36.3%

25 687356 N.A. -43.8% -40.0%

29 941438 N.A. -44.5% -41.0%

grover

9 8968 -29.4% -29.4% -26.1%

11 27136 -29.9% -30.0% -26.3%

13 72646 -29.7% -29.7% -26.0%

15 180497 -29.5% -29.5% -26.0%

hhl

7 5319 -55.4% -55.3% -54.4%

9 63392 -56.3% -56.5% -55.6%

11 629247 -53.7% -53.7% -53.1%

13 5522186 N.A. -52.6% -52.1%

shor

10 8476 -11.1% -11.0% -10.3%

12 34084 -11.2% -11.2% -10.7%

14 136320 -11.3% -11.2% -10.8%

16 545008 -11.3% -11.3% -10.9%

sqrt

42 79574 -33.0% -33.0% -31.5%

48 186101 -32.7% -32.6% -31.2%

54 424994 -32.4% -32.3% -30.9%

60 895253 N.A. -34.3% -32.9%

statevec

5 31000 -78.8% -78.9% -78.1%

6 129827 -78.4% -78.4% -77.9%

7 526541 -78.1% -78.1% -77.8%

8 2175747 N.A. -78.7% -78.6%

vqe

12 11022 -63.0% -69.5% -62.7%

16 22374 -60.1% -66.3% -59.7%

20 38462 -57.4% -63.4% -57.2%

24 59798 -54.9% -60.6% -54.8%

avg -48.1% -49.4% -47.3%

Fig. 6: Optimization quality of VOQC, OAC, and OACMinus,
measured by gate count reduction percentage. OACMinus is
a modified version of OAC that uses simply concatenation

instead of the meld algorithm. The measurements show

that with the meld algorithm, our OAC optimizer reduces

gate counts better than using VOQC alone. The relative

improvement of OAC over OACMinus is 4.4%.

meld operation) performs consistently worse than VOQC,
whereas the non-ablating version (OAC) outperforms VOQC
in all but 5 of the 32 circuits. In the 5 circuits, where VOQC
outperforms our local-optimization, the difference is 0.1%.

E. RQ III: Empirical versus asymptotic performance
In Section IV, we established bounds on the number of

oracle calls performed by our OAC algorithm. In this section,

we check that our implementation is consistent with these

bounds by analyzing the number of oracle calls with respect

to the circuit size. Figure 7 plots the number of oracle

calls made by our OAC optimizer for a subset of circuit

families (the other circuit families behave similarly). The Y-

axis represents the number of oracle calls and the X-axis

represents the input circuit size. The plot shows that the

number of oracle calls increases linearly with circuit size, for

all circuit families.

We note that it would be more desirable to establish that

the total run-time, rather than the number of oracle calls, is

linear, but this is not the case because the oracle optimizers

0 1 2 3 4 5
Input Size ×105

0

50

100

150

200

Nu
m

be
r o

f O
ra

cle
 C

al
ls

boolsat

0 2 4 6 8
Input Size ×105

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f O
ra

cle
 C

al
ls

bwt

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Input Size ×105

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f O
ra

cle
 C

al
ls

grover

0 1 2 3 4 5
Input Size ×106

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f O
ra

cle
 C

al
ls

hhl

0 1 2 3 4 5
Input Size ×105

0

200

400

600

800

Nu
m

be
r o

f O
ra

cle
 C

al
ls

shor

0 2 4 6 8
Input Size ×105

0

100

200

300

400

500

600
Nu

m
be

r o
f O

ra
cle

 C
al

ls
sqrt

0.0 0.5 1.0 1.5 2.0
Input Size ×106

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f O
ra

cle
 C

al
ls

statevec

0 1 2 3 4 5 6
Input Size ×104

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f O
ra

cle
 C

al
ls

vqe

0 1 2 3 4 5
Input Size ×105

0

50

100

150

200

Nu
m

be
r o

f O
ra

cle
 C

al
ls

boolsat

0 2 4 6 8
Input Size ×105

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f O
ra

cle
 C

al
ls

bwt

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Input Size ×105

0

50

100

150

200

250

300

350

400
Nu

m
be

r o
f O

ra
cle

 C
al

ls

grover

0 1 2 3 4 5
Input Size ×106

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f O
ra

cle
 C

al
ls

hhl

0 1 2 3 4 5
Input Size ×105

0

200

400

600

800

Nu
m

be
r o

f O
ra

cle
 C

al
ls

shor

0 2 4 6 8
Input Size ×105

0

100

200

300

400

500

600

Nu
m

be
r o

f O
ra

cle
 C

al
ls

sqrt

0.0 0.5 1.0 1.5 2.0
Input Size ×106

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f O
ra

cle
 C

al
ls

statevec

0 1 2 3 4 5 6
Input Size ×104

0

10

20

30

40

50

60

70

80
Nu

m
be

r o
f O

ra
cle

 C
al

ls

vqe
Fig. 7: The number of oracle calls versus input circuit size

for selected circuits. The plots show that the number of calls

scales linearly with the number of gates.

can take asymptotically non-linear time. For example, the

oracle VOQC can require at least quadratic time in the

number of gates in the circuit being optimized, which varies

as we increase the qubit counts.

F. RQ IV: Impact of compaction and Ω

1) Impact of compaction: Figure 8 shows the number of

rounds and percentage optimizations for each round of our

OAC algorithm, using the convergence ratio 𝜖 = 0.01.
The results show that OAC converges very quickly, always

terminating after 2 rounds of optimization, and that it con-

sistently finds over 99% of the optimizations in the first

round. This is because our OAC ensures segment optimality

after the first round of optimization (see Section IV), that

is, all segments are optimal, though there may be gaps.

The experiment shows that although compaction can enable

some optimizations by removing the gaps, its impact on

these benchmarks is minimal. We separately ran the same

experiments with 𝜖 = 0, which forces the algorithm to run

up to perfect convergence, and observed that OAC requires

4 rounds of optimization on average over all circuits. These

results show that in practice a small number of compaction

rounds suffice to obtain results that are within a very small

fraction of the local optimal.

2) Impact of varying segment size Ω: Figure 9 shows the

running time and the gate count reduction of OAC with



Optimizations

Family Qubits #Rounds Round 1 Round 2

boolsat

28 2 100.00% 0.00%

30 2 100.00% 0.00%

32 2 100.00% 0.00%

34 2 100.00% 0.00%

bwt

17 2 99.59% 0.41%

21 2 99.79% 0.21%

25 2 99.83% 0.17%

29 2 99.90% 0.10%

grover

9 2 99.96% 0.04%

11 2 99.90% 0.10%

13 2 99.99% 0.01%

15 2 99.97% 0.03%

hhl

7 2 99.76% 0.24%

9 2 99.95% 0.05%

11 2 99.96% 0.04%

13 2 99.95% 0.05%

shor

10 2 100.00% 0.00%

12 2 99.97% 0.03%

14 2 99.96% 0.04%

16 2 99.99% 0.01%

sqrt

42 2 99.90% 0.10%

48 2 99.81% 0.19%

54 2 99.97% 0.03%

60 2 100.00% 0.00%

statevec

5 2 100.00% 0.00%

6 2 99.92% 0.08%

7 2 99.92% 0.08%

8 2 99.99% 0.01%

vqe

12 2 99.95% 0.05%

16 2 99.99% 0.01%

20 2 99.98% 0.02%

24 2 99.99% 0.01%

Fig. 8: The number of rounds and the percentage of opti-

mizations in each optimization round of OAC.
Ω Time (s) Output gate count (reduction)

2 17.4 27600 (-56.46%)

5 13.9 27620 (-56.43%)

10 17.7 27609 (-56.45%)

20 18.9 27590 (-56.48%)

40 21.8 27570 (-56.51%)

80 35.3 27564 (-56.52%)

160 66.6 27559 (-56.53%)

320 122.8 27551 (-56.54%)

VOQC 74.1 27673 (-56.35%)

Fig. 9: Choice of Ω: performance of OAC with different Ω

on the hhl circuit with 9 qubits, which initially contains

63392 gates. For reference, we also present the performance

of VOQC at the end.

different values of Ω on the hhl circuit with 9 qubits, which

initially contains 63392 gates. The results show that for a

wide range of Ω values, our optimizer produces a circuit of

similar quality to the baseline VOQC, and typically does so in

significantly less time. When Ω is large, OAC’s running time

scales linearly with Ω, and the output gate count reduces

marginally when Ω increases. We choose Ω = 40 in our

evaluation to achieve a balance between running time and

output quality but note that many different values work

similarly well.

VI. Related Work

We discussed most closely related work in the body of the

paper. In this section, we present a broader overview of the

work on quantum circuit optimization.

a) Cost Functions: Gate count is a widely used metric

for optimizing quantum circuits. In the NISQ era, reducing

gate count improves circuit performance by minimizing noise

from operations and decoherence. It also reduces resources

in fault-tolerant architectures like the Clifford+T gate set.

Researchers have developed techniques to reduce gate count

by either directly optimizing circuits or resynthesizing parts

using efficient synthesis algorithms. We cover optimization

techniques later in the section.

In addition to reducing gate counts, compilers like Qiskit

and t|ket⟩, implement circuit transformations that optimize

cost specific to NISQ architectures. Examples include max-

imizing circuit fidelity in the presence of noise [50], [71],

and reducing qubit mapping and routing overhead (SWAP

gates) for specific device topologies [47], [45], [34], [42], or

hardware-native gates and pulses [52], [77], [66], [26]. Tech-

niques also exist to optimize/synthesis circuits for specific

unitary types, such as classical reversible gates [57], [18], [6],

[75], Clifford+T [3], [40], [61], [38], Clifford-cyclotomic [21],

V-basis [11], [60], and Clifford-CS [25] circuits. While algo-

rithms for small unitaries produce Clifford+T circuits with

an asymptotically optimal number of T gates [24], efficiently

generating optimal large Clifford+T circuits remains a chal-

lenge. The FeynOpt optimizer is used for optimizing the T
count of quantum circuits. It uses an efficient (polynomial-

time) algorithm called phase folding [4], to reduce phase

gates, such as the T gate, by merging them. More generally,

the Feynman toolkit combines phase folding with synthesis

techniques to optimize other metrics like the CNOT count [2].

We demonstrate that our OAC algorithm, which guarantees

local optimality, can use FeynOpt as an oracle for optimizing

T count in Clifford+T circuits in the extended version [5].

These experiments show that our OAC algorithm scales to

large circuits without reducing optimization quality.

b) Resynthesis methods: Resynthesis methods focus on

decomposing unitaries into sequences of smaller unitaries

using algebraic structures of matrices. Examples include the

Cartan decomposition [72], the Cosine-Sine Decomposition

(CSD), the Khaneja Glaser Decomposition (KGD) [36], and

the Quantum Shannon Decomposition (QSD). Some synthesis

methods demonstrate optimality for arbitrary unitaries of

small size (typically for fewer than five qubits), particularly

in terms of gate counts like CNOT gates [59]. However, their

efficiency degrades significantly when dealing with larger

unitaries; furthermore, they require the time-consuming step

of turning the circuit into a unitary. QGo [76] addresses this

limitation with a hierarchical approach that partitions and

resynthesizes circuits block-by-block. However, due to the

lack of optimization across blocks, the performance of QGo

depends heavily on how circuits are partitioned. Our local

optimality technique, and specifically melding, could be used

to address this limitation of QGo.

c) Rule-based and peephole optimization methods: Rule-

based methods find and substitute rules in quantum circuits

to optimize the circuit [33], [6], [31], [79]. VOQC [31] is



a formally verified optimizer that uses rules to optimize cir-

cuits. VOQC implements several optimization passes inspired

by state-of-the-art unverified optimizer proposed by Nam et

al. [51]. These passes include rules that perform NOT gate

propagation, Hadamard gate reduction, single- and two-qubit

gate cancellation, and rotation merging. Most of these passes

take quadratic time in circuit size, while some can take as

much as cubic time [51]. Our experiments show that our

local optimization algorithm OAC effectively uses VOQC as

an oracle for gate count optimization.

The notion of local optimality proposed in this paper

is related peephole optimization techniques from the clas-

sical compilers literature [15], [30], [7]. Peephole optimiz-

ers typically optimize a small number of instructions, e.g.,

rewriting a sequence of three addition operations into a

single multiplication operation. Our notion of local optimality

applies to segments of quantum circuits, without making any

assumption about segment sizes (in our experiments, our

segments typically contained over a thousand gates). Because

peephole optimizers typically operate on small instructions

at a time and because they traditionally consider the non-

quantum programs, efficiency concerns are less important.

In our case, efficiency is crucial, because our segments can

be large, and optimizing quantum programs is expensive. To

ensure efficiency and quality, we devise a circuit cutting-and-

melding technique.

Prior work use peephole optimizers [57], [44] to improve

the circuit one group of gates at a time, and repeat the

process from the start until they reach a fixed point. The

Quartz optimizer also uses a peephole optimization technique

but cannot make any quality guarantees [79]. Our algorithm

differs from this prior work, in several aspects. First, it

ensures efficiency, while also providing a quality guarantee

based on local optimality. Key to attaining efficiency and

quality is its use of circuit cutting and melding techniques.

Second, our algorithm is generic: it can work on large

segments (far larger than a peephole) and optimizes each

segment with an oracle, which can optimize the circuit in

any way it desires, e.g., it can use any of the techniques

described above.

PyZX [37] is another rule-based optimizer that optimizes

T count. It uses ZX-diagrams to optimize circuits and then

extracts the circuit. Circuit extraction for ZX-diagrams is #P-

hard [17], and can take up much more time than optimization

itself. Because OAC invokes the optimizer many times, circuit

extraction for ZX-diagrams can become a bottleneck. In ad-

dition, PyZX only minimizes T count and does not explicitly

optimize gate count. We therefore did not use PyZX in our

evaluation.

d) Search-based methods: Rule-based optimizers may be

limited by a small set of rules and are not exhaustive.

To address this, researchers have developed search-based

optimizers [78], [79], [80], [41] including Quartz [79] and

Queso [78] that automatically synthesize exhaustive circuit

equivalence rules. Although their rule-synthesis approach

differs, both use similar algorithms for circuit optimization.

They iteratively operate on a search queue of candidate

circuits. In each iteration, they pop a circuit from the queue,

rewrite parts of the circuit using equivalence rules, and

insert the new circuits back into the queue. To manage the

exponential growth of candidate circuits, both tools use a

“beam search” approach that limits the search queue size by

dropping circuits appropriately. By limiting the size of the

search queue, Quartz and Queso ensure that the space usage

is linear relative to the size of the circuit. Their running time

remains exponential, and they offer a timeout functionality,

allowing users to halt optimization after a set time. This

approach has delivered excellent reductions in gate count

for relatively small benchmarks [78], [79]. However, for large

circuits, the optimizers do not scale well because they attempt

to search an exponentially large search space.

QFast and QSearch apply numerical optimizations to

search for circuit decompositions that are close to the desired

unitary [80], [41]. Although faster than search-based meth-

ods [16], these numerical methods tend to produce longer

circuits, and their running time is difficult to analyze.

e) Learning-based methods: Researchers have also devel-

oped machine learning models [22], [62] for optimizing quan-

tum circuits with variational/continuous parameters, which

reduce gate count by tuning parameters of shallow circuit

ansatze [46], [53], or by iteratively pruning gates [68], [74].

These approaches, however, are associated with substantial

training costs [74].

VII. Conclusion

Quantum circuit optimization is a fundamental problem

in quantum computing. State-of-the-art optimizers require at

least quadratic time in the size of the circuit, which does

not scale to larger circuits that are necessary for obtaining

quantum advantage, and are unable to make strong quality

guarantees. This paper shows that it is possible to optimize

circuits for local optimality efficiently by proposing a cir-

cuit cutting-and-melding technique. With this cut-and-meld

technique, the algorithm cuts a circuit into subcircuits, opti-

mizes them independently, and melds them efficiently, while

also guaranteeing optimization quality. Our implementation

and experiments show that the algorithm is practical and

performs well, leading to more than an order of magnitude

performance improvement (on average) while also improving

optimization quality. These results show that local optimiza-

tions can be effective in large quantum circuits, which are

necessary for quantum advantage. These results, however,

do not suggest stopping to develop global optimizers, which

remains to be an important goal. It is likely, however, due to

inherent complexity of the problem (it is QMA hard), global

optimizers may struggle to scale to larger circuits efficiently.

Because our approach to local optimality is generic, it can

scale global optimizers to larger circuits by employing them

as oracles for local optimization.

Acknowledgments

This research was supported by the following NSF grants

CCF-1901381, CCF-2115104, CCF-2119352, CCF-2107241.



References

[1] Yuri Alexeev, Dave Bacon, Kenneth R Brown, Robert Calderbank,

Lincoln D Carr, Frederic T Chong, Brian DeMarco, Dirk Englund,

Edward Farhi, Bill Fefferman, et al. Quantum computer systems for

scientific discovery. PRX quantum, 2(1):017001, 2021.

[2] Matthew Amy. Formal methods in quantum circuit design. 2019.

[3] Matthew Amy, Andrew N Glaudell, and Neil J Ross. Number-theoretic

characterizations of some restricted clifford+ t circuits. Quantum, 4:252,

2020.

[4] Matthew Amy, Dmitri Maslov, and Michele Mosca. Polynomial-time

t-depth optimization of clifford+ t circuits via matroid partitioning.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 33(10):1476–1489, 2014.

[5] Jatin Arora, Mingkuan Xu, Sam Westrick, Pengyu Liu, Dantong Li,

Yongshan Ding, and Umut A. Acar. Local optimization of quantum

circuits (extended version), 2025. https://arxiv.org/abs/2502.19526.

[6] Chandan Bandyopadhyay, Robert Wille, Rolf Drechsler, and Hafizur

Rahaman. Post synthesis-optimization of reversible circuit using

template matching. In 2020 24th International Symposium on VLSI
Design and Test (VDAT), pages 1–4. IEEE, 2020.

[7] Sorav Bansal and Alex Aiken. Automatic generation of peephole

superoptimizers. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XII, page 394–403, New York, NY, USA, 2006. Association

for Computing Machinery.

[8] Paul Benioff. The computer as a physical system: A microscopic

quantum mechanical hamiltonian model of computers as represented

by turing machines. Journal of Statistical Physics, 22:563–591, 05 1980.

[9] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost,

Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature,
549(7671):195–202, 2017.

[10] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev.

Silq: A high-level quantum language with safe uncomputation and

intuitive semantics. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 286–300,
2020.

[11] Alex Bocharov, Yuri Gurevich, and Krysta M Svore. Efficient decom-

position of single-qubit gates into v basis circuits. Physical Review A,
88(1):012313, 2013.

[12] Sergey Bravyi, Oliver Dial, Jay M Gambetta, Darío Gil, and Zaira

Nazario. The future of quantum computing with superconducting

qubits. Journal of Applied Physics, 132(16), 2022.
[13] Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam

Gutmann, and Daniel A Spielman. Exponential algorithmic speedup

by a quantum walk. In Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, pages 59–68, 2003.

[14] Andrew M Childs, Robin Kothari, and Rolando D Somma. Quantum

algorithm for systems of linear equations with exponentially improved

dependence on precision. SIAM Journal on Computing, 46(6):1920–1950,
2017.

[15] Keith D Cooper and Linda Torczon. Engineering a compiler. Morgan

Kaufmann, 2022.

[16] Marc G Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi,

and Costin Iancu. Towards optimal topology aware quantum circuit

synthesis. In 2020 IEEE International Conference on Quantum Computing
and Engineering (QCE), pages 223–234. IEEE, 2020.

[17] Niel de Beaudrap, Aleks Kissinger, and John van de Wetering. Cir-

cuit extraction for zx-diagrams can be# p-hard. arXiv preprint
arXiv:2202.09194, 2022.

[18] Yongshan Ding, Xin-Chuan Wu, Adam Holmes, Ash Wiseth, Diana

Franklin, Margaret Martonosi, and Frederic T Chong. Square: Strategic

quantum ancilla reuse for modular quantum programs via cost-effective

uncomputation. arXiv preprint arXiv:2004.08539, 2020.
[19] Sepehr Ebadi, Tout T Wang, Harry Levine, Alexander Keesling, Giulia

Semeghini, Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes

Pichler, Wen Wei Ho, et al. Quantum phases of matter on a 256-atom

programmable quantum simulator. Nature, 595(7866):227–232, 2021.
[20] Richard P Feynman. Simulating physics with computers. In Feynman

and computation, pages 133–153. CRC Press, 2018.

[21] Simon Forest, David Gosset, Vadym Kliuchnikov, and David McKinnon.

Exact synthesis of single-qubit unitaries over clifford-cyclotomic gate

sets. Journal of Mathematical Physics, 56(8):082201, 2015.

[22] Thomas Fösel, Murphy Yuezhen Niu, Florian Marquardt, and Li Li.

Quantum circuit optimization with deep reinforcement learning. arXiv
preprint arXiv:2103.07585, 2021.

[23] Craig Gidney and Martin Eker𝜌a. How to factor 2048 bit rsa integers

in 8 hours using 20 million noisy qubits. Quantum, 5:433, 2021.

[24] Brett Giles and Peter Selinger. Remarks on matsumoto and amano’s

normal form for single-qubit clifford+ t operators. arXiv preprint
arXiv:1312.6584, 2013.

[25] Andrew N Glaudell, Neil J Ross, and Jacob M Taylor. Optimal two-

qubit circuits for universal fault-tolerant quantum computation. arXiv
preprint arXiv:2001.05997, 2020.

[26] Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and

Frederic T Chong. Optimized quantum compilation for near-term

algorithms with openpulse. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 186–200. IEEE, 2020.

[27] Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger,

and Benoît Valiron. Quipper: a scalable quantum programming

language. In Proceedings of the 34th ACM SIGPLAN conference on
Programming language design and implementation, pages 333–342, 2013.

[28] Lov K Grover. A fast quantum mechanical algorithm for database

search. arXiv preprint quant-ph/9605043, 1996.
[29] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum

algorithm for linear systems of equations. Physical review letters,
103(15):150502, 2009.

[30] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. Stratified

synthesis: Automatically learning the x86-64 instruction set. In Proceed-
ings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’16, page 237–250, New York, NY,

USA, 2016. Association for Computing Machinery.

[31] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael

Hicks. A verified optimizer for quantum circuits. Proceedings of the
ACM on Programming Languages, 5(POPL):1–29, 2021.

[32] Torsten Hoefler, Thomas Häner, and Matthias Troyer. Disentangling

hype from practicality: On realistically achieving quantum advantage.

Communications of the ACM, 66(5):82–87, 2023.

[33] Raban Iten, Romain Moyard, Tony Metger, David Sutter, and Stefan

Woerner. Exact and practical pattern matching for quantum circuit

optimization. ACM Transactions on Quantum Computing, 3(1):1–41,
2022.

[34] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Mat-

suo. Optimization of quantum circuit mapping using gate transforma-

tion and commutation. Integration, 70:43–50, 2020.
[35] Dominik Janzing, Pawel Wocjan, and Thomas Beth. Identity check is

qma-complete, 2003.

[36] Navin Khaneja and Steffen J Glaser. Cartan decomposition of su (2n)

and control of spin systems. Chemical Physics, 267(1-3):11–23, 2001.
[37] Aleks Kissinger and John van de Wetering. PyZX: Large Scale

Automated Diagrammatic Reasoning. In Bob Coecke and Matthew

Leifer, editors, Proceedings 16th International Conference on Quantum
Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June

2019, volume 318 of Electronic Proceedings in Theoretical Computer
Science, pages 229–241. Open Publishing Association, 2020.

[38] Aleks Kissinger and John van de Wetering. Reducing the number of

non-clifford gates in quantum circuits. Physical Review A, 102(2):022406,
2020.

[39] Morten Kjaergaard, Mollie E Schwartz, Jochen Braumüller, Philip

Krantz, Joel I-J Wang, Simon Gustavsson, and William D Oliver.

Superconducting qubits: Current state of play. Annual Review of
Condensed Matter Physics, 11(1):369–395, 2020.

[40] Vadym Kliuchnikov, Alex Bocharov, and Krysta M Svore. Asymptot-

ically optimal topological quantum compiling. Physical review letters,
112(14):140504, 2014.

[41] Costin Lancu, Marc Davis, Ethan Smith, and USDOE. Quantum search

compiler (qsearch) v2.0, version v2.0, 10 2020.

[42] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping

problem for nisq-era quantum devices. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 1001–1014, 2019.

[43] Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon,

and Zhihao Jia. Quarl: A learning-based quantum circuit optimizer.

Proceedings of the ACM on Programming Languages, 8(OOPSLA1):555–
582, 2024.

[44] Ji Liu, Luciano Bello, and Huiyang Zhou. Relaxed peephole optimiza-

tion: A novel compiler optimization for quantum circuits. In 2021



IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), pages 301–314. IEEE, 2021.

[45] Aaron Lye, Robert Wille, and Rolf Drechsler. Determining the minimal

number of swap gates for multi-dimensional nearest neighbor quantum

circuits. In The 20th Asia and South Pacific Design Automation
Conference, pages 178–183. IEEE, 2015.

[46] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii.

Quantum circuit learning. Physical Review A, 98(3):032309, 2018.
[47] Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu,

and Aws Albarghouthi. Qubit mapping and routing via maxsat. In 2022
55th IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1078–1091. IEEE, 2022.

[48] Christopher Monroe, Wes C Campbell, L-M Duan, Z-X Gong, Alexey V

Gorshkov, Paul W Hess, Rajibul Islam, Kihwan Kim, Norbert M Linke,

Guido Pagano, et al. Programmable quantum simulations of spin

systems with trapped ions. Reviews of Modern Physics, 93(2):025001,
2021.

[49] Steven A Moses, Charles H Baldwin, Michael S Allman, R Ancona,

L Ascarrunz, C Barnes, J Bartolotta, B Bjork, P Blanchard, M Bohn,

et al. A race-track trapped-ion quantum processor. Physical Review X,
13(4):041052, 2023.

[50] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T

Chong, and Margaret Martonosi. Noise-adaptive compiler mappings

for noisy intermediate-scale quantum computers. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 1015–1029.

ACM, 2019.

[51] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri

Maslov. Automated optimization of large quantum circuits with

continuous parameters. npj Quantum Information, 4(1), may 2018.

[52] Natalia Nottingham, Michael A Perlin, Ryan White, Hannes Bernien,

Frederic T Chong, and Jonathan M Baker. Decomposing and routing

quantum circuits under constraints for neutral atom architectures.

arXiv preprint arXiv:2307.14996, 2023.
[53] Mateusz Ostaszewski, Lea M Trenkwalder, Wojciech Masarczyk,

Eleanor Scerri, and Vedran Dunjko. Reinforcement learning for

optimization of variational quantum circuit architectures. Advances
in Neural Information Processing Systems, 34:18182–18194, 2021.

[54] Jennifer Paykin, Robert Rand, and Steve Zdancewic. Qwire: a core

language for quantum circuits. ACM SIGPLAN Notices, 52(1):846–858,
2017.

[55] Tianyi Peng, Aram W Harrow, Maris Ozols, and Xiaodi Wu. Simulating

large quantum circuits on a small quantum computer. Physical review
letters, 125(15):150504, 2020.

[56] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung,

Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien.

A variational eigenvalue solver on a photonic quantum processor.

Nature communications, 5:4213, 2014.
[57] Aditya K Prasad, Vivek V Shende, Igor L Markov, John P Hayes, and

Ketan N Patel. Data structures and algorithms for simplifying reversible

circuits. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 2(4):277–293, 2006.

[58] Qiskit contributors. Qiskit: An open-source framework for quantum

computing, 2023.

[59] Péter Rakyta and Zoltán Zimborás. Approaching the theoretical limit

in quantum gate decomposition. Quantum, 6:710, 2022.

[60] Neil J Ross. Optimal ancilla-free clifford+ v approximation of z-

rotations. Quantum Information & Computation, 15(11-12):932–950,

2015.

[61] Neil J Ross and Peter Selinger. Optimal ancilla-free clifford+ t approx-

imation of z-rotations. arXiv preprint arXiv:1403.2975, 2014.
[62] Francisco J. R. Ruiz, Tuomas Laakkonen, Johannes Bausch, Matej Balog,

Mohammadamin Barekatain, Francisco J. H. Heras, Alexander Novikov,

Nathan Fitzpatrick, Bernardino Romera-Paredes, John van de Wetering,

Alhussein Fawzi, Konstantinos Meichanetzidis, and Pushmeet Kohli.

Quantum circuit optimization with AlphaTensor. 7(3):374–385. Pub-

lisher: Nature Publishing Group.

[63] Pascal Scholl, Michael Schuler, Hannah J Williams, Alexander A

Eberharter, Daniel Barredo, Kai-Niklas Schymik, Vincent Lienhard,

Louis-Paul Henry, Thomas C Lang, Thierry Lahaye, et al. Quantum

simulation of 2d antiferromagnets with hundreds of rydberg atoms.

Nature, 595(7866):233–238, 2021.

[64] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduc-

tion to quantum machine learning. Contemporary Physics, 56(2):172–
185, 2015.

[65] Peter Selinger. Towards a quantum programming language. Mathe-
matical Structures in Computer Science, 14(4):527–586, 2004.

[66] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I Schus-

ter, Henry Hoffmann, and Frederic T Chong. Optimized compilation of

aggregated instructions for realistic quantum computers. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 1031–1044.

ACM, 2019.

[67] Peter W Shor. Algorithms for quantum computation: Discrete log-

arithms and factoring. In Proceedings 35th annual symposium on
foundations of computer science, pages 124–134. Ieee, 1994.

[68] Sukin Sim, Jonathan Romero, Jérôme F Gonthier, and Alexander A Ku-

nitsa. Adaptive pruning-based optimization of parameterized quantum

circuits. Quantum Science and Technology, 6(2):025019, 2021.
[69] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec

Edgington, and Ross Duncan. t| ket>: a retargetable compiler for nisq

devices. Quantum Science and Technology, 6(1):014003, 2020.
[70] Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, and Mar-

garet Martonosi. Cutqc: using small quantum computers for large

quantum circuit evaluations. In Proceedings of the 26th ACM Inter-
national conference on architectural support for programming languages
and operating systems, pages 473–486, 2021.

[71] Swamit S Tannu and Moinuddin K Qureshi. Not all qubits are

created equal: a case for variability-aware policies for nisq-era quantum

computers. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 987–999. ACM, 2019.

[72] Robert R Tucci. An introduction to cartan’s kak decomposition for qc

programmers. arXiv preprint quant-ph/0507171, 2005.
[73] Finn Voichick, Liyi Li, Robert Rand, and Michael Hicks. Qunity: A

unified language for quantum and classical computing. Proceedings of
the ACM on Programming Languages, 7(POPL):921–951, 2023.

[74] Hanrui Wang, Yongshan Ding, Jiaqi Gu, Yujun Lin, David Z Pan,

Frederic T Chong, and Song Han. Quantumnas: Noise-adaptive search

for robust quantum circuits. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 692–708. IEEE,
2022.

[75] Robert Wille, Majid Haghparast, Smaran Adarsh, and M Tanmay.

Towards hdl-based synthesis of reversible circuits with no additional

lines. In 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–7. IEEE, 2019.

[76] Xin-Chuan Wu, Marc Grau Davis, Frederic T Chong, and Costin Iancu.

Qgo: Scalable quantum circuit optimization using automated synthesis.

arXiv preprint arXiv:2012.09835, 2020.
[77] Xin-Chuan Wu, Dripto M Debroy, Yongshan Ding, Jonathan M Baker,

Yuri Alexeev, Kenneth R Brown, and Frederic T Chong. Tilt: Achieving

higher fidelity on a trapped-ion linear-tape quantum computing archi-

tecture. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 153–166. IEEE, 2021.

[78] Amanda Xu, Abtin Molavi, Lauren Pick, Swamit Tannu, and Aws

Albarghouthi. Synthesizing quantum-circuit optimizers. Proc. ACM
Program. Lang., 7(PLDI), jun 2023.

[79] Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing,

Auguste Hirth, Henry Ma, Jens Palsberg, Alex Aiken, Umut A. Acar,

and Zhihao Jia. Quartz: Superoptimization of quantum circuits. In

Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2022, page
625–640, New York, NY, USA, 2022. Association for Computing Ma-

chinery.

[80] Ed Younis, Koushik Sen, Katherine Yelick, and Costin Iancu. Qfast:

Conflating search and numerical optimization for scalable quantum

circuit synthesis, 2021.

[81] Charles Yuan and Michael Carbin. Tower: data structures in quantum

superposition. Proceedings of the ACM on Programming Languages,
6(OOPSLA2):259–288, 2022.

[82] Charles Yuan, Christopher McNally, and Michael Carbin. Twist:

Sound reasoning for purity and entanglement in quantum programs.

Proceedings of the ACM on Programming Languages, 6(POPL):1–32, 2022.


