
ConiQ: Enabling Concatenated Quantum Error
Correction on Neutral Atom Arrays

Pengyu Liu
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

pengyuliu@cmu.edu

Mingkuan Xu
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

mingkuan@cmu.edu

Hengyun Zhou
QuEra Computing Inc

Boston, MA
hyharryzhou@gmail.com

Hanrui Wang
Computer Science Department

University of California, Los Angeles
Los Angeles, CA
wang@cs.ucla.edu

Umut A. Acar
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA
umut@cmu.edu

Yunong Shi
Amazon Web Services

New York, NY
shiyunon@amazon.com

Abstract—Recent progress on concatenated codes, especially
many-hypercube codes, achieves unprecedented space efficiency.
Yet two critical challenges persist in practice. First, these codes
lack efficient implementations of addressable logical gates. Sec-
ond, the required high degree of parallelism and long-range
interactions pose significant challenges for current hardware
platforms. In this paper, we propose an efficient compilation
approach for concatenated codes, specifically many-hypercube
codes, targeted at neutral atom arrays, which provide the
necessary parallelism and long-range interactions. Our ap-
proach builds on two key innovations. First, we introduce
Automorphism-assisted Hierarchical Addressing (AHA) logical
CNOT gates that significantly reduce spacetime overhead com-
pared to conventional distillation-based methods. Second, we
develop Virtual Atom Intermediate Representation (VAIR) that
enables level-wise optimization and legalization. We implement
these innovations in ConiQ, a hardware-aware quantum com-
piler designed to compile fault-tolerant quantum circuits for
neutral atom arrays using many-hypercube codes. Our evaluation
demonstrates that ConiQ achieves up to 2000× reduction in
spacetime overhead and up to 106× reduction in compilation
time compared to state-of-the-art compilers, with our AHA gates
providing an additional overhead reduction of up to 20×. These
results establish concatenated codes as a promising approach for
fault-tolerant quantum computing in the near future.

Index Terms—quantum error correction, neutral atom arrays,
concatenated codes, fault-tolerant quantum computing, quantum
compilation.

I. INTRODUCTION

Quantum computing inherently suffers from noise, making
quantum error correction (QEC) indispensable for practical
quantum computation. Surface codes have long been the lead-
ing candidate due to their high error threshold, but their low
encoding rate imposes substantial qubit overhead. For instance,
achieving a 10−9 logical error rate at a physical error rate of
10−3 requires a surface code of distance 15, incurring 225×
space overhead [12]. Quantum Low-Density Parity Check
(qLDPC) codes [26], [9], [18], despite promising asymptotic
properties, face significant near-term limitations, including

poor hardware adaptability and insufficient understanding of
practical logical gate implementations [16].

Recently, concatenated QEC codes have emerged as com-
pelling alternatives due to their impressive encoding rates. For
example, many-hypercube codes [14] represent a family of
QEC codes constructed by recursively concatenating quantum
error-detecting codes with minimal sizes and high qubit effi-
ciency, such as the [[6,4,2]] codes (encoding 4 logical qubits
into 6 physical qubits with distance 2). This approach enables
a substantial reduction in physical qubit overhead. Four levels
of concatenation yield an encoding rate of (4/6)4 ≈ 20%,
allowing many-hypercube codes to encode 1 logical qubit
using approximately 5 physical qubits on average at a code
distance of 16, significantly outperforming both surface codes
and qLDPC codes. However, two critical obstacles hinder
the practical deployment of concatenated codes. First, current
proposals rely on distillation for individually addressable log-
ical gates, particularly CNOT gates, which incur considerable
spacetime overhead [14]. Second, the requirements for long-
range interaction and high parallelism pose substantial chal-
lenges for current hardware and compilers. These limitations
have thus far restricted concatenated codes to theoretical study,
impeding their application in real-world quantum systems.

The second challenge can potentially be addressed by
leveraging neutral atom arrays as the hardware platform. Neu-
tral atom arrays offer numerous advantages for fault-tolerant
quantum computing: recent experiments demonstrate their
long coherence times, impressive scalability, and low-error
operations [24], [6], [17], [10]. Most importantly, the unique
capability of neutral atom arrays to dynamically reposition
qubits during computation provides long-range interactions
and extensive parallelism—properties particularly well-suited
for concatenated codes. However, the long-range interactions
and parallelism are in a restricted form, and require special
compilation techniques to exploit the capabilities provided
by neutral atom arrays. Although compilers for neutral atom



Logical
Level

Level 1

Level 0

Many-hypercube codes

[[4, 2, 2]]
encoding

Logical
Instruction

Level 0
Instructions

lower

Level 1
Instructions

[[4, 2, 2]]
encoding

lower

Neutral atom arrays

Native
Instructions

Physical
Atoms

Key Innovation 1 (AHA Gate): 
Code symmetry together with

concatenated nature enable resource
efficient logical CNOTs.

Key Innovation 2 (VAIR):
Invariant instructions and constraints

enable level-wise legalization and
optimization.

Encoding Instructions

lower

Mapping

Fig. 1: Overview of ConiQ and its key innovations: (1)
The Automorphism-assisted Hierarchical Addressing (AHA)
scheme for efficient individually addressable logical gates.
(2) The Virtual Atom Intermediate Representation (VAIR) for
efficient optimization and legalization across concatenation
levels.

arrays such as Atomique [31] and Enola [30] exist, they focus
on the compilation of general quantum circuits, and result in
prohibitive overheads in the context of concatenated codes.

To harness the advantages of concatenated QEC codes and
neutral atom arrays, we introduce ConiQ, a novel compiler
framework specifically designed for efficiently implementing
concatenated QEC codes on neutral atom arrays. ConiQ builds
upon two key innovations with an overview shown in Fig. 1:

(1) By leveraging code symmetry and concatenation, we
develop an Automorphism-assisted Hierarchical Addressing
(AHA) logical CNOT gate scheme that is individually ad-
dressable, requiring only a few error correction cycles of
overhead, dramatically improving efficiency compared to prior
distillation-based schemes.

(2) We introduce a Virtual Atom Intermediate Represen-
tation (VAIR) that virtualizes logical registers as physical
atoms across concatenation levels. Crucially, we prove that
VAIR preserves consistent program states, instruction sets,
and hardware constraints at each concatenation level, enabling
efficient level-wise legalization and optimization.

Compared to the state-of-the-art compilers Atomique [31]
and Enola [30] with prior distillation-based CNOT gates,

a)

Order-Preserving
Violation

Row-Column
Violation

b)

AOD atoms

SLM atoms

Instructions ConstraintsRegisters

Fig. 2: Neutral atom array architecture, instructions, and con-
straints: (a) An allowed move operation (left) and a forbidden
move operation that violates the order-preserving constraint
(right). (b) An allowed transfer operation affecting entire rows
and columns (left) and a forbidden operation that violates the
row-column constraint (right).

ConiQ achieves over 104× improvement in spacetime over-
head and 106× reduction in compilation time. Thus, ConiQ
realizes the potential of high-encoding-rate quantum error cor-
rection with dramatically reduced overhead, enabling practical
deployment of concatenated QEC codes on near-term neutral
atom quantum computers.

II. BACKGROUND

A. Neutral Atom Arrays

Neutral atom arrays possess the unique capability to move
qubits during computation, providing effective long-range con-
nectivity and massive parallelism. Here we formally describe
the neutral atom array architecture, program states, instruction
set, and constraints at the physical level. In Section VI, we
extend these concepts to the logical level and design the Vir-
tual Atom Intermediate Representation (VAIR) for efficiently
compiling concatenated codes.
Architecture. Neutral atom arrays utilize individually-focused
laser spots to trap and manipulate atoms. Two types of traps
are typically employed: fixed spatial light modulators (SLM)
and movable acousto-optic deflectors (AOD). Different lasers
are typically used for SLM and AOD traps, so different type of
traps won’t interfere with each other. Each type of trap forms
a two-dimensional square grid. Atoms can reside in either type
of laser trap. AOD atoms can be dynamically repositioned by
adjusting the corresponding lasers. Conceptually, this configu-
ration creates two planar atom layers: a stationary SLM layer
and a movable AOD layer, slightly offset along the z axis.
Program State Representation. We represent the collec-
tive system state, particularly atom positions, as a four-tuple
(I, J,A, S):



• I: Ordered x-coordinates of AOD traps. I[i] denotes the
x coordinate of the i-th column, where I[i] < I[i′] for
i < i′.

• J : Ordered y-coordinates of AOD traps. J [j] denotes the
y coordinate of the j-th row, where J [j] < J [j′] for
j < j′.

• A: Positions of AOD atoms, where A[i][j] identifies
the atom at the i-th column and j-th row, located at
(I[i], J [j]) or is empty (∅) when no atom is present.

• S: Positions of SLM atoms on an integer grid, where
S[i][j] identifies the atom index at integer coordinates
(i, j) (assuming SLM atoms are placed in a unit grid) or
is empty (∅) when no atom is present.

Instruction Set. Neutral atom arrays support quantum gate
operations as well as parallel atom transfer and movement
through the following instruction set. Here, we use I ′ and J ′

to represent subsets of I and J , respectively:
• Transa→s(I

′, J ′) and Transs→a(I
′, J ′): Transfer atoms

between SLM and AOD traps at intersections of rows I ′

and columns J ′. a → s indicates transfer from AOD to
SLM and vice versa. For Transs→a(I

′, J ′), if an SLM
atom exists at S[i′][j′] = n where i′ ∈ I ′, j′ ∈ J ′, and
there is an empty AOD trap A[i][j] = ∅ where I[i] = i′

and J [j] = j′ (the SLM atom and the empty AOD trap
overlap in the x-y plane), then the atom is transferred by
setting A[i][j] = n and S[i′][j′] = ∅. Transa→s(I

′, J ′)
performs the reverse transfer.

• Mov(I, J): Relocates AOD atoms to new positions,
updating the state to (I, J,A, S). The movement must
satisfy the order-preserving constraint: I and J remain
ordered.

• 1Qgate(U, I ′, J ′): Applies single-qubit operations U to
SLM atoms at specified grid coordinates. For all i′ ∈
I ′, j′ ∈ J ′, if there is an SLM atom S[i′][j′] = n, then
U is applied to qubit n.

• ParallelCZ(I ′, J ′): For all SLM atoms S[i′][j′], where
i′ ∈ I ′, j′ ∈ J ′, if there is an AOD atom overlapping
with it, a CZ gate is applied between the SLM atom and
the AOD atom.1

Program Constraints. The instruction set for neutral atom ar-
rays offers significant parallelism but with specific constraints
(illustrated in Fig. 2):

• Order-Preserving Constraint: Move instructions must
maintain the relative order of AOD atoms to prevent
collisions (Fig. 2 (a)).

• Row-Column Constraint: Instructions are executed on all
intersections of entire rows and columns (Fig. 2 (b)).

While available instructions provide parallelism that could
potentially be advantageous for concatenated codes, the con-
straints also pose significant challenges for efficient circuit

1In current neutral atom arrays, CZ gates are implemented globally. The
ParallelCZ(I′, J ′) operation can be realized using a global CZ gate with
two move operations [31]. While one-qubit gates can also be applied to
AOD atoms, and two-qubit gates between SLM-SLM or AOD-AOD pairs
are possible, we omit these capabilities in this paper for simplicity.

compilation: unlike in superconducting qubits, where logically
independent physical operations acting on neighboring qubits
can always be scheduled in parallel.

B. QEC Basics and Many-Hypercube Codes

We will focus on many-hypercube codes in this paper, which
are the leading candidate in concatenated QEC codes, but our
approach, especially the VAIR compilation, can be applied to
other concatenated QEC codes.
Error Detecting Codes. Error detecting codes are QEC codes
capable of detecting errors but not correcting them. The
simplest family of error-detecting codes is the [[2m, 2m−2, 2]]
code [2], which encodes 2m−2 logical qubits into 2m physical
qubits with code distance 2. We denote this family as D2m.
The D2m code has two stabilizers: X1 · · ·X2m and Z1 · · ·Z2m.
As an example, Table I presents the logical operators of D4,
the smallest instance of the D2m family.
Automorphism of codes. Automorphisms of codes are sym-
metries that can be exploited to construct efficient fault-
tolerant gadgets through physical qubit permutation. Take the
D4 code as an example: by swapping the first and third
physical qubits, we exchange the logical operators of the two
logical qubits [22], which creates a logical SWAP gate. This
automorphism property will be leveraged in our CNOT gate
implementation.

Logical Op. q1 q2 q3 q4

XL1
X X

XL2 X X

ZL1
Z Z

ZL2
Z Z

TABLE I: Logical operators of the D4 error detecting code.
Each row shows the combination of physical operators that
implement a logical operation. For example, applying X gates
to physical qubits 1 and 2 implements an X operation on the
first logical qubit.

Many-hypercube Codes. The D2m code alone cannot correct
errors and is therefore unsuitable for fault-tolerant quantum
computation. Concatenation offers a powerful technique for
constructing codes with enhanced error correction capabilities
from simpler codes. The concatenated D6 codes are known as
many-hypercube codes [14]. Concatenation encodes physical
qubits using an initial code, then treats the resulting logical
qubits as physical inputs for the next encoding level. This
process can be repeated to enhance error correction capabili-
ties. We use level to denote each concatenation iteration, and
register to refer to a block of logical qubits treated collectively
at a particular level.

In this paper, we extend the definition of many-hypercube
codes to include both D6 and D4 codes and denote an l-level
many-hypercube code as Dn1,n2,...,nl

, indicating that level-
i uses a Dni

code. For example, the code D4,4,6,6 employs
two levels of D4 (near the physical level), followed by two
levels of D6 encoding (near the logical level). We use qi1···il



X

Physical
Qubits

Group of qubits
to be encoded

X X

X X X X

L1 Logical
Qubits

L2 Logical
Qubits

X Gate

L1 Register

Encode
each
row

using

code

L2 Register

Encode
each

column

using

code

a) b) c)

Fig. 3: Construction of a level-2 D4,4 many-hypercube code:
(a) Initial arrangement of physical qubits. (b) First level of
concatenation. (c) Second level of concatenation.

to denote the il-th logical qubit in the code consisting of the
level-(l − 1) logical qubits qi1···il−1

.
Fig. 3 illustrates a D4,4 code with 16 physical qubits. First,

groups of four qubits are encoded using the D4 code, creating
level-1 registers with 2 logical qubits each. Then the two
columns of level-1 logical qubits are encoded using the D4

code separately, resulting in a level-2 register with four logical
qubits. This demonstrates why we refer to the four logical
qubits as a register: the information of these logical qubits is
interleaved across the physical qubits and must be processed
collectively. In this example, logical Pauli gates can be applied
based on Table I. As shown in the figure, to apply a logical
X gate to the first logical qubit in a level-2 register, we apply
two level-1 X gates, which are further decomposed into four
physical X gates.

H

M

M

MHPrep

HPrep

Prep

Prep

Prep

Prep

Prep

Fig. 4: State preparation gadget for a level-2 register in D4,4

code.
Fault-tolerant Gadgets of Many-hypercube Codes. Fault-
tolerant gadgets represent atomic instructions at the logical
level that guarantee the desired fault-tolerant properties [15].
We focus on two types of gadgets: state preparation and logical
instructions.
State Preparation. State preparation constitutes the first step
of a fault-tolerant circuit and is essential for other logical
instructions. [14] proposed a state preparation gadget that
offers an effective trade-off between logical error rate and
overhead. Taking the level-2 state preparation protocol as an
example, as illustrated in Fig. 4, the inputs q0 to q3 and a0 to
a2 are all level-1 registers. These registers first undergo a level-

1 encoding circuit, followed by a series of transversal gates.
Conditioned on the measurement results of the ancilla regis-
ters, we can prepare the level-2 encoded state fault-tolerantly.
From this example, we observe two critical properties of
many-hypercube codes gadgets: (1) Higher-level gadgets often
require identical copies of lower-level gadgets that can, in
principle, be batched—a property that should be exploited
during compilation. (2) Numerous long-range interactions are
required, which may be expensive to implement.
Logical Instructions. Since each code block in the D2m family
encodes multiple logical qubits in one register, the ability
to individually address specific logical qubits within a block
is crucial for computation. The conventional approach for
implementing addressable logical CNOT gates relies on plus
state distillation [14], which requires exponentially increasing
resources. However, the D2m code, being a CSS code, permits
simpler implementations of certain gates. Logical CNOT gates
between all corresponding logical qubits of two registers can
be implemented transversally by applying physical CNOT gates
between all corresponding physical-qubit pairs [7]. Addition-
ally, the D2m codes feature transversal H gates (up to a
permutation of the logical qubits).

III. CHALLENGES IN PRACTICAL IMPLEMENTATIONS OF
CONCATENATED CODES ON NEUTRAL ATOM ARRAYS

Although concatenated QEC codes offer excellent space
efficiency as quantum memory, two key challenges hinder their
practical deployment: (1) Existing logical gates, particularly
individually addressable gates, incur significant spacetime
overhead for computation. (2) The absence of efficient compi-
lation methods prevents effective utilization of the intrinsic
parallelism in neutral atom arrays. We will examine these
challenges in detail in the following sections.

A. Efficient Addressable Logical Gate Implementation

The current distillation-based approach for implementing
individually addressable logical gates introduces significant
overhead, primarily because state distillation must be repeated
at each level of concatenation [14], [35]. At every level, high-
fidelity resource states are generated by consuming multiple
noisy copies from the lower level. This recursive structure
compounds the cost exponentially, causing overall resource
requirements to grow rapidly with concatenation levels. Con-
sequently, it is crucial to develop low-cost logical gate schemes
for practical near-term implementation.

B. Effectively Leveraging Neutral Atom Arrays’ Intrinsic Par-
allelism

Compiling concatenated QEC codes typically involves two
tasks: register mapping and gadget scheduling. One approach
is to fully unfold all registers and gadgets to the physical
level before performing mapping and scheduling. Current
compilers, such as Atomique [31] and Enola [30], follow
this method. However, this approach neglects the hierarchical
structure inherent in concatenated QEC codes, resulting in
significant spacetime and compilation overhead.



Static Inter-level
Optimization

Register and Gadget Definition

Inter-level
Register Mapping

Logical
Circuit

Logical-to-Gadget
Transformation

Hierarchical Lowering

Lower Level Mapping and Schedule
in VAIR

No

Yes

Top Level
Register Mapping

Is Physical Level?

Level

Physical Mapping and 
Native Physical Schedule

Inter-level
Gadget Schedules

 in VAIR

Top Level
Gadgets Schedule

in VAIR

Fig. 5: Three-phase compilation workflow of ConiQ.

A more effective compilation strategy maps registers and
schedules gadgets level-by-level, closely aligning with the
hierarchical structure of concatenated QEC codes. However,
current compilation methods lack a program representation
that efficiently exposes physical constraints of neutral atom
arrays to higher logical levels, making optimization (batching
parallelizable gadgets) and legalization (ensuring physical-
level feasibility) nearly impossible.

Without properly exposing these physical constraints, only
two naive strategies remain: (1) prioritizing legalization by
sequentially scheduling all gadgets, thus severely underutiliz-
ing hardware parallelism, or (2) prioritizing optimization by
batching all logically independent gadgets, potentially gener-
ating illegal schedules that must be resolved at the physical
level.

Both strategies lead to catastrophic consequences—ignoring
legalization produces unsound and unusable compilation out-
comes, whereas sacrificing parallelism causes exponential run-
time growth due to multiplicative inefficiencies compounding
across concatenation levels. We call this exponential ineffi-
ciency cascading latency amplification.

Therefore, it is crucial to develop a compilation method
capable of level-by-level compilation that simultaneously
achieves legalization and optimization by clearly exposing
allowed instructions and physical constraints at every concate-
nation level.

IV. CONIQ ARCHITECTURE

ConiQ is specifically designed to address the challenges
outlined above through two key innovations:

1) Automorphism-assisted Hierarchical Addressing
(AHA) Gates: By leveraging the symmetry and
concatenated structure of codes, ConiQ introduces an
Automorphism-assisted Hierarchical Addressing logical
gate scheme, significantly reducing overhead compared
to distillation-based methods.

2) Virtual Atom Intermediate Representation (VAIR): At
the core of ConiQ is VAIR, a hierarchical intermediate
representation explicitly designed to expose allowed in-
structions and physical constraints of neutral atom arrays
to each concatenation level. We prove that scheduling
instructions compliant with VAIR constraints at higher
levels directly ensures both legality and parallelism at the
physical level.

Built upon these key innovations, ConiQ employs a structured,
level-wise compilation workflow, illustrated in Fig. 5. The
workflow comprises three phases:
(1) Logical-to-Gadget Transformation: This phase converts
the input logical circuit into a sequence of top-level fault-
tolerant gadgets. We leverage our AHA to implement address-
able logical gates with minimized gadget cost while ensuring
fault tolerance requirements [15].
(2) Static Inter-level Optimization: Starting with gadget
definitions for each concatenation level, this phase generates
templates of optimized register mappings and schedules using
the VAIR framework. VAIR enables independent optimization
and legalization of each level, ensuring that physical runtime
decreases proportionally with each level’s runtime reduction.
(3) Hierarchical Lowering: Using the optimized templates
produced in the previous phase, hierarchical lowering recur-
sively translates instructions from higher levels down to phys-
ical instructions. VAIR guarantees that no additional overhead
is introduced when compiling to lower levels and that all
physical instructions are native to the neutral atom arrays.

This structured, three-phase compilation not only exploits
the hierarchical structure of concatenated codes, but also
reuses the templates produced in the static optimization phase,
significantly reducing compilation overhead compared to ex-
isting compilers, effectively unlocking the full potential of
concatenated QEC codes on neutral atom array hardware.

V. AUTOMORPHISM-ASSISTED HIERARCHICAL
ADDRESSING GATE SCHEME

In this section, we introduce the Automorphism-assisted
Hierarchical Addressing (AHA) scheme, which enables in-
dividually addressable logical instructions with significantly
reduced overhead. For clarity, we illustrate the scheme using
the D4 code, though the methods readily extend to the D6

code.
We present this section in two parts: first summarizing

the fundamental instructions required to implement the AHA
scheme, then detailing the construction process of individually
addressable gates.



d)

Transversal

 
CNOT

Apply b) 

Register

 
SWAP

Apply b) 

Physical
Qubits Encoding

L1-Logical
Qubits

L2-Logical
Qubits

c)

a)

b)
L1 Register

L2 Register

Fig. 6: Implementation of logical operations through physical
qubit permutations: (a) A logical SWAP gate implemented by
swapping the first and third physical qubits. (b) A logical
CNOT gate implemented by swapping the second and third
physical qubits. (c) Intra-register batched CNOT gates achieved
by swapping the second and third rows of physical qubits in a
4×4 grid. (d) Inter-register batched CNOT gates along another
dimension, implemented by swapping the second and third
columns of physical qubits.

Fundamental Instructions for AHA. The AHA scheme
requires the following essential logical instructions:

1) State preparation and error correction.
2) Transversal CNOT gates.
3) Intra-register batched SWAP operations along a dimen-

sion:
∏
SWAP(qi1,...,0,...,il , qi1,...,1,...,il).

4) Intra-register batched CNOT operations along a dimen-
sion:

∏
CNOT(qi1,...,0,...,il , qi1,...,1,...,il).

The original many-hypercube codes construction [14] di-
rectly provides instructions 1–3. Instruction 4, critical for the
AHA scheme, is newly introduced in this work and detailed
below.
Intra-register Instructions via Automorphisms. As illus-
trated in Fig. 6 (a, b) and Section II-B, the automorphisms
of the D4 code enable intra-register logical SWAP and logical
CNOT through strategically selected physical SWAP opera-
tions [22]. At higher concatenation levels, we generalize these
patterns by combining lower-level intra-register SWAP and
CNOT operations, as depicted in Fig. 6 (c, d). By carefully
selecting physical qubit pairs for SWAP, we can implement
intra-register batched logical CNOT gates along any desired
dimension, naturally scaling to arbitrary concatenation levels.
Addressable Logical CNOT via Hierarchical Addressing.
With the fundamental intra-register operations established,
we next describe the construction of individually addressable
logical CNOT gates using hierarchical addressing. Although

Data
Register 1

Transversal
CNOT

Intra-Register
Batched
CNOT

Transversal
CNOT

Data
Register 2

a)

Intra-Register
Batched
CNOT

Inter-Register
Batched
CNOT

Data
Register 1

Ancilla
Register

b)

Data
Register 2

Inter-Register Batched CNOT Inter-Register
Addressable CNOT

Data
Register

Ancilla
Register

c)

H H

H H

Fig. 7: Implementation of individually addressable logical
gates: (a) Inter-register batched CNOT gates on multiple logical
qubits. (b) Individually addressable CNOT gates achieved
through hierarchical addressing. (c) Individually addressable
H gates implemented through a combination of logical swaps
and transversal operations. Note that error correction cycles are
required for fault tolerance but are omitted here for clarity.

intra-register batched gates alone cannot address individual
logical qubits, they effectively separate logical qubits into two
distinct halves. To achieve full addressability, we iteratively
refine this division in a binary-search-like process termed
hierarchical addressing.

We first construct the inter-register batched CNOT gate,
illustrated in Fig. 7 (a). This design is inspired by the bridge
gate [21], which allows us to selectively operate on half
of the logical qubits. Using ancilla registers, we continue
this selection process until we can address a single logical
qubit, as shown in Fig. 7 (b). For higher concatenation levels,
this selection process can be repeated at each level of the
hierarchy. Notably, SWAP and transversal CNOT operations can
be performed in constant time with minimal overhead. Thus,
the cost of hierarchical addressing is primarily determined by
error correction.
Other Addressable Logical Instructions. Using the address-
able logical CNOT together with the transversal H gadget, we
can efficiently implement addressable logical H on specific
logical qubits, as illustrated in Fig. 7 (c). Beyond Clifford
instructions, non-Clifford instructions such as the T gate can be
implemented through magic state preparation and teleportation
using the addressable CNOT described above.



a) b) c)

Tensor Tensor

g

g

g

g

g

g

G G

Fig. 8: VAIR lowering process. (a) Register mapping from
four level-1 registers to their constituent level-0 registers. (b)
An example showing how to implement level-1 gadgets using
level-0 gadgets. (c) An example showing how to implement
level-1 movements using level-0 movements.

VI. VAIR: VIRTUAL ATOM INTERMEDIATE
REPRESENTATION

At the core of ConiQ is the Virtual Atom Intermediate
Representation (VAIR), which enables the efficient, level-wise
compilation while ensuring legality and optimized compilation
outcomes. By explicitly modeling logical states, instructions,
and register constraints at every concatenation level, VAIR
guarantees that any optimization or legalization performed at
higher levels inherently respects physical-level constraints and
preserves hardware parallelism.

We first define the VAIR abstraction formally, and then
detail its key properties that enable level-wise compilation.

A. VAIR Definition

VAIR extends the neutral atom model to higher levels of
abstraction, treating logical registers as virtual atoms to main-
tain consistent constraints across all levels. At each level-l, the
system state is represented by a four-tuple Rl = (I, J,A, S),
defined as follows:

• SLM registers are arranged on a unit-distance integer
grid, with the i-th column and j-th row at (i, j).

• I and J denote the ordered x- and y-coordinates of
the AOD registers, respectively, maintaining the ordering
constraints (I[i] < I[i′] for i < i′, and similarly for J).

• A[i][j] maps the location of the AOD register to its index.
A[i][j] = n means the n-th register is of type AOD and
lies at (I[i], J [j]). An empty position is denoted by ∅.

• S[i][j] maps the location of the SLM register to its index.
S[i][j] = n means the n-th register is of type SLM and
lies at (i, j).

At every concatenation level-l, the supported instructions
mirror their physical counterparts at level-0. Here, we use I ′

and J ′ to represent subsets of I and J , respectively:
• Transla→s(I

′, J ′) and Transls→a(I
′, J ′): These opera-

tions transfer registers between AOD and SLM types. The
subscript indicates the transfer direction (a→ s for AOD
to SLM, s→ a for SLM to AOD). For Transls→a(I

′, J ′),

if an SLM register exists where S[i′][j′] = n with
i′ ∈ I ′, j′ ∈ J ′, and there exists an empty AOD position
A[i][j] = ∅ where I[i] = i′ and J [j] = j′, then
the register is transferred by setting A[i][j] = n and
S[i′][j′] = ∅. Transla→s(I

′, J ′) performs the inverse
operation.

• Movl(I, J): Moves AOD registers to new positions spec-
ified by I and J , transforming the state to (I, J,A, S).
The operation must preserve ordering: I[i] < I[i′] for
i < i′ and J [j] < J [j′] for j < j′.

• 1Rgadgetl(G, I ′, J ′): For S[i′][j′] = n where i′ ∈ I ′

and j′ ∈ J ′, apply the single-register gadget G to register
n.

• 2Rgadgetl(G, I ′, J ′): Applies a two-register gadget
G between overlapping AOD-SLM register pairs spec-
ified by I ′ and J ′. Specifically, for any SLM register
S[i′][j′] = m where i′ ∈ I ′ and j′ ∈ J ′, if there exists
an AOD register n that overlaps with m in the x-y plane,
the operation G(n,m) is applied.

B. Level-wise Optimization and Legalization using VAIR

The uniformity of the VAIR abstraction across all concate-
nation levels enables efficient and independent compilation at
each level. At level-0, VAIR reduces to the physical neutral
atom model, guaranteeing physical feasibility of all compiled
instructions. The compilation process comprises two main
steps at each level: register mapping and gadget scheduling.
Register Mapping. To map a single level-l register to its
constituent level-(l − 1) registers, we define a systematic
coordinate-based approach. For a single level-l register con-
sisting of N subregisters with coordinates (i′k, j

′
k), the k-th

subregister of a level-l register at position (i, j) is mapped to
the coordinates:

(i · I∗m + i′k, j · J∗
m + j′k)

We denote I∗ = {i′1, . . . , i′N}, J∗ = {j′1, . . . , j′N}, I∗m =
max(I∗) and J∗

m = max(J∗). This mapping is illustrated in
Fig. 8 (a).

The entire mapping of level-l registers can be concisely
expressed using tensor products:

I ⊗ I∗ = {i · I∗m + i′|i ∈ I, i′ ∈ I∗}

And similarly for J . This tensor product formulation allows
us to describe a coarse-grained representation of high-level
registers without needing to specify their lower-level imple-
mentations.

ConiQ adopts an alternating linear mapping strategy, alter-
nating between x and y axes for different concatenation levels
for its simplicity while producing an approximately square
physical layout.
Gadget Scheduling. As a result of expressing register map-
pings as tensor products, each level-l instruction can be sched-
uled to level-(l − 1) instructions efficiently by the following
rules:

• Transla→s(I, J) and Transls→a(I, J): These transfers
are implemented as Transl−1

a→s(I ⊗ I∗, J ⊗ J∗).



Algorithm 1: Greedy Scheduling of Lower-Level In-
structions

Input: A sequence of level-(l − 1) instructions
[g1, g2, . . . , gn] that implements a higher-level
gadget G

Output: Optimized schedule S of level-(l − 1)
instruction represented in VAIR

S ← [] ; // Initialize empty schedule
remaining← [g1, g2, . . . , gn] ; // Instructions
to be scheduled

while remaining ̸= ∅ do
F ← frontLayer(remaining) ; // Extract
instructions with no dependencies

instructionType← randomSelect(F) ;
// Randomly choose an instruction
type

batchedSet←
maximalAddressableSet(F , instructionType) ;
// Find largest set satisfying
row-column constraint

thisInstruction←
generateInstruction(batchedSet, instructionType) ;
// Generate the instruction
represented in VAIR

append(S, thisInstruction) ; // Add batched
instruction to schedule

remaining← remaining \ thisInstruction ;
// Remove scheduled instructions

return S

• Movl(I, J): Implemented as Movl−1(I ⊗ I∗, J ⊗ J∗).
We can readily verify that I ⊗ I∗ and J ⊗ J∗ satisfy the
order-preserving constraint if the input I and J satisfy
the constraint. An example is illustrated in Fig. 8 (c).

• 1Rgadgetl(G, I, J): If G is composed of n level-
(l−1) gadgets

∏
k 1Rgadgetl−1(gk, I

′
k, J

′
k), executable

in c cycles, then 1Rgadgetl(G, I, J) can be executed
in the same c cycles by being decomposed as

∏
k

1Rgadgetl−1(gk, I ⊗ I ′k, J ⊗ J ′
k). An example is illus-

trated in Fig. 8 (b).
• 2Rgadgetl(G, I, J): If G is composed of n level-
(l−1) gadgets

∏
k 2Rgadgetl−1(gk, I

′
k, J

′
k), executable

in c cycles, then 2Rgadgetl(G, I, J) can be executed
in the same c cycles by being decomposed as

∏
k

2Rgadgetl−1(gk, I ⊗ I ′k, J ⊗ J ′
k).

To optimize scheduling within each concatenation level,
we utilize a greedy batching algorithm (illustrated in Algo-
rithm 1), ensuring high parallelism while maintaining legality
constraints.

C. Key Properties and Guarantees of VAIR

By iteratively applying the mapping and lowering steps
enabled by VAIR, we achieve two critical properties for the
compiled schedules:

e1Q e2Q emove ereset emeas

0.03% 0.5% 0.1% 0.25% 0.25%

TABLE II: Error rates used in our neutral atom array simula-
tion model, based on recent experimental results [6].

• Level-wise legalization ensures global legalization:
Any level-l gadget expressed in VAIR guarantees native
executability on neutral atom arrays once compiled down
to physical instructions.

• Level-wise optimization ensures global optimization:
Optimizing schedules at level-l directly improves their
compiled physical-level implementations, ensuring mono-
tonic performance gains.

These properties empower ConiQ to efficiently compile
concatenated codes into physically realizable instructions, sig-
nificantly outperforming conventional compilation approaches.

VII. EVALUATION

We present a comprehensive evaluation of ConiQ. First,
we compare its performance against state-of-the-art baselines
on key fault-tolerant gadgets and logical-level subroutines.
Subsequently, we conduct an ablation study to quantify the
individual contributions of the two main innovations in ConiQ:
the AHA CNOT gate scheme and the compilation framework
based on VAIR.

A. Evaluation Methodology

Baselines. Our evaluation examines three distinct compilers:
Atomique [31], Enola [30], and ConiQ. For CNOT gate
schemes, we evaluate both distillation-based approaches and
our AHA scheme. All compilation experiments were con-
ducted on a machine equipped with an AMD EPYC 7763
CPU and 256GB RAM with a time limit of 24 hours. For
both Atomique and Enola, since the default configuration can’t
complete most of our benchmarks within the time limit, we
use their most scalable configurations.
Benchmarks. Our evaluation focuses on three representative
fault-tolerant gadgets: (1) state preparation, the fundamental
building block for initializing logical qubits; (2) logical CNOT
gates, essential for universal quantum computation; and (3)
16-qubit GHZ state preparation, which probes multi-qubit
entanglement and synchronization capabilities. We evaluate
these benchmarks across four different code configurations:
D4,4, D4,4,4, D4,4,4,4, and D4,4,6,6

2. For comparing many-
hypercube codes with alternative quantum QEC codes, we
employ the memory experiment, which measures the logical
error rate after one round of error correction as a function of
the physical error rate [1].
Error Model. For the memory experiment, we consider five
primary error sources in neutral atom arrays: two-qubit gate
errors (e2Q), single-qubit gate errors (e1Q), atom movement
errors (emove), qubit reset errors (ereset), and measurement

2We choose D4,4,6,6 instead of D6,6,4,4 because D4 codes have better
threshold than D6 codes, and concatenating codes with higher threshold in
the lower levels is more advantageous [36], [35].



errors (emeas). Given the long coherence times of neutral
atoms, decoherence errors are negligible and thus omitted from
our model. We use the concrete error rates reported in [6],
summarized in Table II. For experiments requiring a range of
physical error rates, we treat the two-qubit gate error rate as the
reference point and scale all other error sources proportionally
according to Table II.
Simulation Tools. Surface code simulations utilize the open-
source Stim framework [11] in conjunction with pyMatch-
ing [19] for logical error rate estimation. For the many-
hypercube code, which leverages a concatenated construction,
we developed a specialized simulator that exploits the under-
lying hierarchical structure, enabling accelerated sampling.
Decoding. We implement the level-by-level decoding ap-
proach proposed in [14]. This decoding algorithm iteratively
identifies the minimum-distance codeword at lower levels, then
propagates these results to decode codewords at higher levels
and has been demonstrated to outperform both hard-decision
and Bayesian-based decoding methods for concatenated codes.

B. ConiQ’s Overall Performance

Table III summarizes the performance of ConiQ against the
baselines, demonstrating that ConiQ significantly outperforms
conventional compilers across all metrics. For state preparation
on D4,4,6,6, compilation times decrease from several hours
with Atomique or 50.9 seconds with Enola to merely 0.001
seconds with ConiQ. While Atomique fails to compile level-4
CNOT and GHZ circuits within the 24-hour time limit, ConiQ
consistently completes these compilations within 0.2 seconds,
and reduces the spacetime product by up to 2×103 (CNOT gate
on D4,4,6,6) compared to Enola. Moreover, our AHA CNOT
gate scheme reduces the spacetime product by up to 8× for a
single CNOT gate and up to 20× for GHZ state preparation.

These substantial performance gains stem from two core
innovations in ConiQ: efficient addressable gates enabled by
the AHA gate scheme and parallelism-preserving scheduling
enabled by the VAIR. We analyze these two components in
greater detail in the following sections.

C. Impact of AHA CNOT Gate Scheme and Scheduling with
VAIR

Since Enola consistently outperforms Atomique, we focus
our comparative analysis on ConiQ with Enola.
Level-wise Scheduling. ConiQ’s VAIR framework enables
level-wise optimization and legalization that effectively mit-
igates cascading latency amplification. As shown in Fig. 9 (a),
space-time reduction grows significantly with increasing con-
catenation levels, reaching 103 at level-4. The nearly straight
line in logarithmic scale confirms that ConiQ successfully
avoids the multiplicative overhead that would otherwise com-
pound across levels.
AHA CNOT Gate Scheme. Our AHA scheme maps logi-
cal CNOT operations directly to controlled atom movements
compatible with row-column addressability constraints. This
reduces overhead compared to distillation-based approaches,
yielding up to 8× reduction in spacetime product for CNOT

2.0 2.5 3.0 3.5 4.0
Levels

101

102

103

O
ve

rh
ea

d 
R

ed
uc

tio
n

a)

Prep
Dist. CNOT
AHA CNOT

2.0 2.5 3.0 3.5 4.0
Levels

1

2

3

4

b)

Enola
ConiQ

Fig. 9: Overhead reduction factors (higher is better) on
concatenated D4 codes: (a) Spacetime overhead reduction
achieved by VAIR compared to Enola across concatena-
tion levels. (b) Efficiency comparison between AHA and
distillation-based CNOT gate implementations.

10 3 10 2

Physical Error Rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Lo
gi

ca
l E

rr
or

 R
at

e

D4, 4
D4, 4, 4
D4, 4, 6, 6
D4, 4, 4, 4

SC3
SC9
SC13
SC15

Fig. 10: Logical error rate as a function of physical error rate.
SCd denotes surface codes with distance d.

operations and 20× for GHZ state preparation, with benefits
increasing at higher concatenation levels. Fig. 9 (b) shows the
AHA scheme performs better with ConiQ than Enola because
ConiQ can better exploit the higher parallelism of transversal
gates.

Together, the AHA scheme and parallelism-preserving
scheduling deliver substantial resource savings, demonstrating
the importance of hardware-aware optimizations for scalable
quantum error correction on neutral atom arrays.

D. Discussion: Many-hypercube Codes vs. Other Codes

We further assess the performance of many-hypercube codes
by comparing their logical error rate and space overhead
against other leading candidate codes for neutral atom arrays.
Comparison with Surface Codes. Fig. 10 compares logical
error rates of many-hypercube codes and surface code during
memory experiments. Many-hypercube codes use Steane-style
error correction while the surface codes use Shor-style error
correction with d rounds of stabilizer measurements per logical
time step [20].

We extrapolate the logical-to-physical error rate relationship
as pl = β(

pph

pth
)α, where α is the code distance scaling factor,

β is the error coefficient, and pth is the threshold error rate.



Compiler Enola ConiQ

CNOT Scheme Distillation AHA Distillation AHA

Metric Comp.
Time

S.T.
Prod.

Comp.
Time

S.T.
Prod.

Comp.
Time

S.T.
Prod.

Comp.
Time

S.T.
Prod.

State Prep(D4,4) 0.06 0.004 0.06 0.004 0.0001 0.0007 0.0001 0.0007
State Prep(D4,4,4) 0.4 0.1 0.4 0.1 0.0005 0.007 0.0005 0.007

State Prep(D4,4,4,4) 22.1 34.7 22.1 34.7 0.001 0.1 0.001 0.1
State Prep(D4,4,6,6) 50.9 87.6 50.9 87.6 0.001 0.2 0.001 0.2

CNOT(D4,4) 1.6 1.4 1.5 1.3 0.002 0.05 0.0007 0.03
CNOT(D4,4,4) 147.0 239.0 68.1 118.6 0.008 1.1 0.005 0.3

CNOT(D4,4,4,4) 12508.0 17820.8 3999.6 6700.1 0.03 20.0 0.04 4.3
CNOT(D4,4,6,6) 73371.1 78612.1 9908.7 15002.6 0.04 54.6 0.06 6.8
GHZ(D4,4,4,4) 50561.1 72188.2 529.3 905.0 0.1 83.2 0.01 3.1
GHZ(D4,4,6,6) T.O. T.O. 3403.1 11156.5 0.2 227.6 0.02 9.2

TABLE III: Performance comparison of different compilers and different CNOT gate implementation schemes. Results show
compilation time (Comp. Time, in seconds) and space-time overhead (S.T. Prod., in 106 qubit-cycles) across different codes
and benchmark circuits. “T.O.” indicates timeout (> 24 hours). Note: the overhead of state preparation does not depend on the
CNOT implementation scheme.

At a physical error rate of 0.1%, D4,4,4,4 achieves better
logical error rates than SC15 while using only 16 physical
qubits per logical qubit compared to 225 for the surface
code—a 14× reduction. The D4,4,6,6 code achieves an even
greater 19× reduction in physical qubit requirements.
Comparison with HGP Codes. Fig. 11 compares our D4,4,4,4

code with the hypergraph product (HGP) codes [34]. The HGP
codes treat the entire qubit array as a single logical block
with error rates improving with system size, while D4,4,4,4

maintains constant logical error rates using fixed-size blocks of
44 physical qubits. Though HGP has advantages in scenarios
with lower physical error rates and high qubit counts, our
analysis shows that it requires over 105 physical qubits at 0.1%
error rate or 5× 104 qubits at 0.01% to outperform D4,4,4,4,
far exceeding what will be available in the near future.
Summary. The many-hypercube codes achieves competitive
logical error rates with substantially lower space overhead
compared to surface codes while avoiding the prohibitive qubit
requirements of HGP codes, making it well-suited for near-
term neutral atom quantum devices with limited qubit avail-
ability and quality. However, it is important to note that the
relative advantage changes when implementing logical gates.
A comprehensive evaluation of space-time costs in the context
of complete quantum algorithms remains an important direc-
tion for future research, particularly considering the difference
between Shor- and Steane-style error correction, and new
decoding algorithms that achieve effective single-shot error
correction in surface codes should also be considered [37].

VIII. RELATED WORK

Compilers for Neutral Atom Arrays. Several compilers for
neutral atom arrays have been proposed [3], [27], [29], [31],
[32], [30]. These compilers could be seamlessly integrated into

10 4 10 3 10 2

Physical Error Rate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
um

be
r o

f P
hy

si
ca

l Q
ub

its
×105

10

5

0

5

10

lo
g 1

0
(D

4,
4,

4,
4/H

GP
)

Fig. 11: Comparative performance of D4,4,4,4 and HGP codes
under varying physical error rates and qubit counts. Color
indicates the ratio of logical error rates (D4,4,4,4 to HGP). Blue
region indicates HGP outperforms D4,4,4,4 and the black line
indicates the boundary where the two codes have the same
logical error rate.

the VAIR framework to enhance the simple greedy algorithm
currently employed in ConiQ for optimizing register mapping
and scheduling. Additionally, the state preparation scheme of
many-hypercube codes relies on post-selection, which bears
significant similarities to atom loss management in neutral
atom arrays. Techniques developed for handling atom loss [3],
[27] may provide valuable insights for efficiently managing
post-selection in our context. Further, the parallel control of
multiple physical qubits to implement parallel logical opera-
tions demonstrated in Ref. [5] can also be viewed as a special
case of the VAIR model.
Compilers for Fault-Tolerant Quantum Computing. Prior
research on fault-tolerant quantum computing compilers has
predominantly focused on surface codes, addressing diverse
aspects including resource estimation [4], compilation for



trapped ion [23] and superconducting [33], [25] architectures.
Concatenated QEC Codes. Concatenated codes have a rich
history in fault-tolerant quantum computing, and our compila-
tion framework can be readily applied to various concatenated
code constructions. By concatenating the 7-qubit Steane code
with the 15-qubit Reed-Muller code, Ref. [8] demonstrates a
105-qubit code capable of performing CNOT gates efficiently
and implementing H and T gates with relative ease. Through
concatenation of high-threshold codes with high-rate codes,
Ref. [36], [35] achieves a 2.4% threshold (7 times higher than
the surface code) while requiring 10 times less space overhead
than conventional surface codes. Ref. [28], [13] introduced
hierarchical codes and yoked surface code respectively, which
concatenate surface code with other codes, enabling high code
rates with 2D topological constraints.

IX. CONCLUSION AND OUTLOOK

In this paper, we have presented ConiQ, a specialized
compiler for efficiently implementing concatenated QEC codes
on neutral atom arrays. Through the VAIR model and the AHA
gate scheme, we effectively manage the complex constraints
imposed by neutral atom array architectures and achieve orders
of magnitude improvement in both spacetime overhead and
compilation time compared to state-of-the-art compilers. These
results establish the many-hypercube codes as a promising
candidate for fault-tolerant quantum computation in the near
future.

While our current evaluation focuses primarily on Clifford
circuits, our compiler framework can be straightforwardly
extended to support arbitrary quantum circuits through con-
suming magic states.

ACKNOWLEDGMENTS

This research was supported by the following NSF grants
CCF-1901381, CCF-2115104, CCF-2119352, CCF-2107241.
We are grateful to Chameleon Cloud for providing the compute
cycles needed for the experiments.

REFERENCES

[1] R. Acharya, L. Aghababaie-Beni, I. Aleiner, T. I. Andersen, M. Ans-
mann, F. Arute, K. Arya, A. Asfaw, N. Astrakhantsev, J. Atalaya et al.,
“Quantum error correction below the surface code threshold,” arXiv
preprint arXiv:2408.13687, 2024.

[2] V. V. Albert and P. Faist, Eds., The Error Correction Zoo, 2025.
[Online]. Available: https://errorcorrectionzoo.org/

[3] J. M. Baker, A. Litteken, C. Duckering, H. Hoffmann, H. Bernien,
and F. T. Chong, “Exploiting long-distance interactions and tolerating
atom loss in neutral atom quantum architectures,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 818–831.

[4] M. E. Beverland, P. Murali, M. Troyer, K. M. Svore, T. Hoefler,
V. Kliuchnikov, G. H. Low, M. Soeken, A. Sundaram, and A. Vaschillo,
“Assessing requirements to scale to practical quantum advantage,” arXiv
preprint arXiv:2211.07629, 2022.

[5] D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz,
S. Ebadi, M. Cain, M. Kalinowski, D. Hangleiter et al., “Logical
quantum processor based on reconfigurable atom arrays,” Nature, vol.
626, no. 7997, pp. 58–65, 2024.

[6] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kali-
nowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner et al., “A
quantum processor based on coherent transport of entangled atom
arrays,” Nature, vol. 604, no. 7906, pp. 451–456, 2022.

[7] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes
exist,” Physical Review A, vol. 54, no. 2, p. 1098, 1996.

[8] C. Chamberland, T. Jochym-O’Connor, and R. Laflamme, “Thresholds
for universal concatenated quantum codes,” Physical review letters, vol.
117, no. 1, p. 010501, 2016.

[9] I. Dinur, M.-H. Hsieh, T.-C. Lin, and T. Vidick, “Good quantum ldpc
codes with linear time decoders,” in Proceedings of the 55th annual
ACM symposium on theory of computing, 2023, pp. 905–918.

[10] S. J. Evered, D. Bluvstein, M. Kalinowski, S. Ebadi, T. Manovitz,
H. Zhou, S. H. Li, A. A. Geim, T. T. Wang, N. Maskara et al., “High-
fidelity parallel entangling gates on a neutral-atom quantum computer,”
Nature, vol. 622, no. 7982, pp. 268–272, 2023.

[11] C. Gidney, “Stim: a fast stabilizer circuit simulator,” Quantum,
vol. 5, p. 497, Jul. 2021. [Online]. Available: https://doi.org/10.22331/
q-2021-07-06-497

[12] C. Gidney and M. Ekerå, “How to factor 2048 bit rsa integers in 8 hours
using 20 million noisy qubits,” Quantum, vol. 5, p. 433, 2021.

[13] C. Gidney, M. Newman, P. Brooks, and C. Jones, “Yoked surface codes,”
arXiv preprint arXiv:2312.04522, 2023.

[14] H. Goto, “Many-hypercube codes: High-rate quantum error-correcting
codes for high-performance fault-tolerant quantum computation,” arXiv
preprint arXiv:2403.16054, 2024.

[15] D. Gottesman, “An introduction to quantum error correction,” in Pro-
ceedings of Symposia in Applied Mathematics, vol. 58, 2002, pp. 221–
236.

[16] ——, “Opportunities and challenges in fault-tolerant quantum compu-
tation,” arXiv preprint arXiv:2210.15844, 2022.

[17] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya,
P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert,
J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman,
T. Ballance, C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt,
B. Rogers, T. Noel, and M. Saffman, “Multi-qubit entanglement
and algorithms on a neutral-atom quantum computer,” Nature,
vol. 604, no. 7906, pp. 457–462, Apr 2022. [Online]. Available:
https://doi.org/10.1038/s41586-022-04603-6

[18] M. B. Hastings, J. Haah, and R. O’Donnell, “Fiber bundle codes:
breaking the n 1/2 polylog (n) barrier for quantum ldpc codes,” in
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, 2021, pp. 1276–1288.

[19] O. Higgott and C. Gidney, “Sparse blossom: correcting a million
errors per core second with minimum-weight matching,” arXiv preprint
arXiv:2303.15933, 2023.

[20] S. Huang, K. R. Brown, and M. Cetina, “Comparing shor and steane
error correction using the bacon-shor code,” Science Advances, vol. 10,
no. 45, p. eadp2008, 2024.

[21] T. Itoko, R. Raymond, T. Imamichi, and A. Matsuo, “Optimization of
quantum circuit mapping using gate transformation and commutation,”
Integration, vol. 70, pp. 43–50, 2020.

[22] E. Knill, “Quantum computing with very noisy devices,” arXiv preprint
quant-ph/0410199, 2007.

[23] T. LeBlond, R. S. Bennink, J. G. Lietz, and C. M. Seck, “Tiscc: A surface
code compiler and resource estimator for trapped-ion processors,” in
Proceedings of the SC’23 Workshops of The International Conference
on High Performance Computing, Network, Storage, and Analysis, 2023,
pp. 1426–1435.

[24] H. J. Manetsch, G. Nomura, E. Bataille, K. H. Leung, X. Lv, and
M. Endres, “A tweezer array with 6100 highly coherent atomic qubits,”
arXiv preprint arXiv:2403.12021, 2024.

[25] A. Molavi, A. Xu, S. Tannu, and A. Albarghouthi, “Compilation for
surface code quantum computers,” arXiv preprint arXiv:2311.18042,
2023.

[26] P. Panteleev and G. Kalachev, “Asymptotically good quantum and locally
testable classical ldpc codes,” in Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, 2022, pp. 375–388.

[27] T. Patel, D. Silver, and D. Tiwari, “Geyser: a compilation framework
for quantum computing with neutral atoms,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture, 2022, pp.
383–395.

[28] C. A. Pattison, A. Krishna, and J. Preskill, “Hierarchical memories:
Simulating quantum ldpc codes with local gates,” arXiv preprint
arXiv:2303.04798, 2023.

[29] B. Tan, D. Bluvstein, D. M. Lukin, and J. Cong, “Qubit mapping
for reconfigurable atom arrays,” ICCAD, 2022. [Online]. Available:
https://dl.acm.org/doi/10.1145/3508352.3549331

https://errorcorrectionzoo.org/
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.1038/s41586-022-04603-6
https://dl.acm.org/doi/10.1145/3508352.3549331


[30] D. B. Tan, W.-H. Lin, and J. Cong, “Compilation for dynamically field-
programmable qubit arrays with efficient and provably near-optimal
scheduling,” in Proceedings of the 30th Asia and South Pacific Design
Automation Conference, 2025, pp. 921–929.

[31] H. Wang, P. Liu, D. B. Tan, Y. Liu, J. Gu, D. Z. Pan, J. Cong, U. A. Acar,
and S. Han, “Atomique: A quantum compiler for reconfigurable neutral
atom arrays,” in 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2024, pp. 293–309.

[32] H. Wang, B. Tan, P. Liu, Y. Liu, J. Gu, J. Cong, and S. Han, “Q-pilot:
field programmable quantum array compilation with flying ancillas,”
arXiv preprint arXiv:2311.16190, 2023.

[33] G. Watkins, H. M. Nguyen, K. Watkins, S. Pearce, H.-K. Lau, and
A. Paler, “A high performance compiler for very large scale surface
code computations,” Quantum, vol. 8, p. 1354, 2024.

[34] Q. Xu, J. P. Bonilla Ataides, C. A. Pattison, N. Raveendran, D. Bluvstein,
J. Wurtz, B. Vasić, M. D. Lukin, L. Jiang, and H. Zhou, “Constant-
overhead fault-tolerant quantum computation with reconfigurable atom
arrays,” Nature Physics, pp. 1–7, 2024.

[35] H. Yamasaki and M. Koashi, “Time-efficient constant-space-overhead
fault-tolerant quantum computation,” Nature Physics, pp. 1–7, 2024.

[36] S. Yoshida, S. Tamiya, and H. Yamasaki, “Concatenate codes, save
qubits,” arXiv preprint arXiv:2402.09606, 2024.

[37] H. Zhou, C. Zhao, M. Cain, D. Bluvstein, C. Duckering, H.-Y. Hu, S.-T.
Wang, A. Kubica, and M. D. Lukin, “Algorithmic fault tolerance for fast
quantum computing,” arXiv preprint arXiv:2406.17653, 2024.


	Introduction
	Background
	Neutral Atom Arrays
	QEC Basics and Many-Hypercube Codes

	Challenges in Practical Implementations of Concatenated Codes on Neutral Atom Arrays
	Efficient Addressable Logical Gate Implementation
	Effectively Leveraging Neutral Atom Arrays' Intrinsic Parallelism

	ConiQ Architecture
	Automorphism-assisted Hierarchical Addressing Gate Scheme
	VAIR: Virtual Atom Intermediate Representation
	VAIR Definition
	Level-wise Optimization and Legalization using VAIR
	Key Properties and Guarantees of VAIR

	Evaluation
	Evaluation Methodology
	ConiQ's Overall Performance
	Impact of AHA CNOT Gate Scheme and Scheduling with VAIR
	Discussion: Many-hypercube Codes vs. Other Codes

	Related Work
	Conclusion and Outlook
	References

