
Atlas: Hierarchical Partitioning for Quantum Circuit
Simulation on GPUs

Mingkuan Xu
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA
mingkuan@cmu.edu

Shiyi Cao
Department of EECS

UC Berkeley
Berkeley, CA, USA
shicao@berkeley.edu

Xupeng Miao
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

xupeng@cmu.edu

Umut A. Acar
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

umut@cmu.edu

Zhihao Jia
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

zhihao@cmu.edu

Abstract—This paper presents techniques for theoretically and
practically efficient and scalable Schrödinger-style quantum circuit
simulation. Our approach partitions a quantum circuit into a
hierarchy of subcircuits and simulates the subcircuits on multi-
node GPUs, exploiting available data parallelism while minimizing
communication costs. To minimize communication costs, we
formulate an Integer Linear Program that rewards simulation of
“nearby” gates on “nearby” GPUs. To maximize throughput, we
use a dynamic programming algorithm to compute the subcircuit
simulated by each kernel at a GPU. We realize these techniques
in Atlas, a distributed, multi-GPU quantum circuit simulator.
Our evaluation on a variety of quantum circuits shows that Atlas
outperforms state-of-the-art GPU-based simulators by more than
2× on average and is able to run larger circuits via offloading
to DRAM, outperforming other large-circuit simulators by two
orders of magnitude.

Index Terms—Parallel programming, quantum simulation.

I. INTRODUCTION

Quantum computing has established an advantage over
classical computing, especially in areas such as cryptography,
machine learning, and physical sciences [1]–[8]. Several quan-
tum computers have been built recently, including Sycamore [9],
Bristlecone [10], Jiuzhang [11], Osprey [12], and Condor [13].
However, the robustness demands of many quantum applica-
tions exceed those of modern noisy intermediate-scale quantum
(NISQ) computers, which suffer from decoherence and lack
of error-correction [14], [15]. Furthermore, NISQ computers
are expensive resources—many remain inaccessible beyond a
small group. Therefore, there is significant interest in quantum
circuit simulation, which enables performing robust quantum
computation on classical parallel machine.

Several approaches to simulating quantum circuits have
been proposed, including Schrödinger- and Feynman-style
simulation. Even though Feynman-style simulation can require
a small amount of space, its time requirement appears very
high. Therefore, most modern simulators use Schrödinger-style
quantum circuit simulation, which maintains an entire quantum

state in a state vector of size 2n for n qubits, and applies each
gate of the circuit to it.

To tackle the scalability challenges of state-vector simulation,
researchers exploit the plethora of parallelism available in this
task by using CPUs, GPUs, and parallel machines [16]–[26].
To cope with the increasing demand for simulating larger
circuits, recent work has proposed techniques for storing state
vectors on DRAM and secondary storage (e.g., disks) [23],
[27]. Even after over a decade of research, quantum circuit
simulation continues to remain challenging for performance
and scalability.

At a high level of abstraction, there are three key challenges
to (Schrödinger style) state-vector simulation. The first chal-
lenge is the space requirements of storing the state vector with
2n amplitudes, each of which is a complex number. Overcoming
this challenge requires distributing the state vector in a parallel
machine with heterogeneous memory. Second, simulating the
application of a quantum gate to one or multiple qubits involves
strided accesses to the state vector, which requires fine-grained
inter-node and/or inter-device communications. The cost of
these communications becomes the performance bottleneck for
large-scale circuit simulation. Third, because quantum gates
typically operate on a small number of qubits, simulating
a quantum gate involves multiplying a sparse matrix with
the state vector, resulting in low arithmetic intensity, e.g., as
little as 0.5 on real-world quantum circuits [27]. This harms
performance on modern accelerators (e.g., GPUs) designed for
compute-intensive workload.

In this paper, we propose techniques for performant and
scalable quantum circuit simulation on modern GPU systems.
Specifically, we consider a multi-node GPU architecture, where
each node may host a number of GPUs. We then perform on this
architecture quantum circuit simulation in the (Schrödinger)
state-vector style by using the available memory across all
nodes to store the state. To minimize the communication costs,
we partition the quantum circuit into a number of stages, each of

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

http://crossmark.crossref.org/dialog/?doi=10.1109%2FSC41406.2024.00087&domain=pdf&date_stamp=2024-11-17

which consists of a (contiguous) subcircuit of the input circuit
that can be simulated on a single GPU without requiring non-
local accesses outside the memory of the GPU. To maximize
the benefits from parallelism, we further partition the subcircuit
of each stage into kernels or groups of gates that are large
enough to benefit from parallelism but also small enough to
prevent exponential blowups in cost.

Given such a partitioned circuit consisting of stages and
kernels, we present a simulation algorithm that performs the
simulation in stages and that restricts much of the expensive
communication to take place only between the stages. To
maximize throughput and parallelism within each stage, the
algorithm shards the state vector into contiguous pieces such
that each shard may be used to simulate the subcircuit of the
stage on a single GPU. The approach allows multiple shards
(of a stage) to be executed in parallel or sequentially depending
on the availability of resources.

We formulate the partitioning problem consisting of staging
and kernelization and present provably effective algorithms
for solving them. For the staging problem, we provide a
solution based on Integer Linear Programming, which can
be solved by an off-the-shelf solver. For the kernelization
problem, we present a dynamic programming solution that can
ensure optimality under some assumptions.

We present an implementation, called Atlas, that realizes the
proposed approach. Our evaluation on a variety of quantum
circuits on up to 256 GPUs (on 64 nodes) shows that Atlas is up
to 20.2× faster than state-of-the-art GPU-based simulators and
can scale to large quantum circuits that go beyond GPU memory
capacity (up to 178× faster than state-of-the-art simulators that
also go beyond GPU memory capacity).

In summary, this paper makes the following contributions.
• A hierarchical partitioning approach to scaling perfor-

mant quantum circuit simulation based on staging and
kernelization.

• An ILP algorithm to stage a circuit for simulation that
can minimize the number of stages.

• A dynamic programming algorithm for kernelizing each
stage to ensure efficient parallelism.

• An implementation that realizes hierarchical partitioning
and significantly outperforms existing simulators.

II. BACKGROUND

Architectural Model. We assume a multi-node GPU archi-
tecture with 2G nodes. Each node contains multiple GPUs and
a single CPU with an attached DRAM module. Each GPU can
store in its local memory 2L amplitudes (complex numbers).
Each node can store in its regional memory 2L+R amplitudes,
where 2R can be the number of GPUs per node or can be set
such that 2L+R equals the number of amplitudes that can be
stored in the DRAM memory of the node.

Quantum Information Fundamentals. A quantum circuit
consists of a number of qubits (quantum bits) and gates that
operate on them. The state |ψ⟩ of a n-qubit quantum circuit is
a superposition of its basis states denoted |0⟩, |1⟩, ..., |2n − 1⟩
and is typically written as |ψ⟩ =

∑2n−1
i=0 αi |i⟩ , where αi is a

complex coefficient (also called amplitude) of the basis state
|i⟩. When measuring the state of the system, the probability
of observing the state |i⟩ as the output is |αi|2; therefore,∑2n−1

i=0 |αi|2 = 1. When simulating a quantum circuit with n
qubits, we can represent its state with a vector of 2n complex
values α⃗ = (α0, α1, ..., α2n−1)

⊤.
The semantics of a k-qubit gate is specified by a 2k × 2k

unitary complex matrix U and applying the gate to a quantum
circuit with state |ψ⟩ results in a new state: |ψ⟩ → U |ψ⟩.
For example, applying a 1-qubit gate on the q-th qubit of a
quantum system updates its state vector as follows:[

αf(i)

αf(i)+2q

]
→

[
u00 u01
u10 u11

]
×

[
αf(i)

αf(i)+2q

]
, (1)

where
[
u00 u01
u10 u11

]
is the 2 × 2 unitary complex matrix that

represents the 1-qubit gate, and f(i) = 2q+1⌊ i
2q ⌋+(i mod 2q)

for all integers between 0 and 2n−1 − 1.

III. HIERARCHICAL PARTITIONING FOR SIMULATION

We present our quantum simulation algorithm with hierar-
chical circuit partitioning.

Algorithm 1 Hierarchical partitioning of a quantum circuit C
and the simulation algorithm for simulating the circuit starting
with the input state state. The parameters L,R,G describe the
distributed execution model with L local qubits, R regional
qubits, and G global qubits.

1: function PARTITION(C, L,R,G)
2: stages = STAGE(C, L,R,G)
3: stagedKernels = []
4: for i = 0 . . . |stages| − 1 do
5: (Ci,Q) = stages[i]
6: kernelsi = KERNELIZE(Ci)
7: stagedKernels[i] = (kernelsi,Q)

8: return stagedKernels

9: function EXECUTE(stagedKernels, state)
10: P = identity permutation
11: shards = [state]
12: for i = 0 . . . |stagedKernels| − 1 do
13: (kernelsi,Q) = stagedKernels[i]
14: (shards,P) = SHARD(shards,Q,P)
15: parfor shard in shards do
16: for k in kernelsi do
17: LAUNCHKERNEL(k, shard)

18: function SIMULATE(C, state, L,R,G)
19: stagedKernels = PARTITION(C, L,R,G)
20: EXECUTE(stagedKernels, state)

Algorithm 1 shows the pseudocode for our algorithms for
quantum circuit simulation with hierarchical partitioning. The
algorithm PARTITION takes as arguments the input circuit C and
the architecture parameters consisting of the number of local,
regional, and global qubits, L,R,G respectively. It partitions
the input circuit C into stages using the STAGE function. Each

N
od

e
0

Stage 1[qubit mapping]

𝒒𝟐

𝒒𝟏

𝒒𝟎 	𝑇
	𝐻

	𝑇	𝑇

𝒒𝟒

𝒒𝟑

	𝑇 	𝐻
	𝐻

	𝐻

	𝐻

	𝑇
	𝑇

	𝐻

	𝐻

	𝑇
	𝐻

	𝑇	𝑇

	𝑇 	𝐻
	𝐻

	𝐻

	𝐻
	𝑇
	𝑇

	𝐻

	𝐻

Shard

Circuit Staging

Stage 0
𝒒𝟎[𝒑𝟎]
𝒒𝟏[𝒑𝟏]
𝒒𝟐[𝒑𝟐]
𝒒𝟑[𝒑𝟑]
𝒒𝟒[𝒑𝟒]

[qubit mapping]
𝒒𝟎[𝒑𝟑]
𝒒𝟏[𝒑𝟒]
𝒒𝟐[𝒑𝟎]
𝒒𝟑[𝒑𝟏]
𝒒𝟒[𝒑𝟐]

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

State vector

Shard 0

K0 K1

Shard 1 All-to-AllShard 2
Shard 3

K2
GPU0 K3

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

K0 K1 K2
GPU2 K3

Data Parallelism 00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

Shard 0
Shard 1

Shard 2
Shard 3

K4 K5
GPU0

K4 K5
GPU1

Data Parallelism

K4 K5
GPU2

K4 K5
GPU3

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

N
od

e
1

GPU Kernel

𝒒𝒊[𝒑𝒋] Qubit mapping

Local qubit

Stage

K0 K1 K2 K3
GPU1

K0 K1 K2
GPU3 K3

Stage 1[qubit mapping]
	𝑇
	𝐻

	𝑇	𝑇

	𝑇 	𝐻
	𝐻

	𝐻

	𝐻

	𝑇
	𝑇

	𝐻

	𝐻
Shard

Circuit Kernelization

Stage 0
𝒒𝟎[𝒑𝟎]
𝒒𝟏[𝒑𝟏]
𝒒𝟐[𝒑𝟐]
𝒒𝟑[𝒑𝟑]
𝒒𝟒[𝒑𝟒]

[qubit mapping]
𝒒𝟎[𝒑𝟑]
𝒒𝟏[𝒑𝟒]
𝒒𝟐[𝒑𝟎]
𝒒𝟑[𝒑𝟏]
𝒒𝟒[𝒑𝟐]

K0

K1

K2

K3

K4

K5
Execution

Fig. 1: An example application of circuit partitioning and execution. We stage the circuit so that qubits of each gate map to
local qubits (i.e., green lines in each stage). The notation qi[pj] indicates that the i-th logical qubit maps to the j-th physical
qubit. The KERNELIZE algorithm then partitions the gates of each stage into kernels that provide for data parallelism.

stage consists of a subcircuit and a partition of the logical
qubits of the (entire) circuit into sets of local, regional, and
global qubits, such that the subcircuit can be simulated entirely
locally by a single GPU, performing local memory accesses
only. We describe the staging algorithm STAGE in Section IV.

After staging the circuit, the algorithm PARTITION, proceeds
to kernelize each circuit by calling KERNELIZE on the subcir-
cuit of each stage. The algorithm KERNELIZE further partitions
the subcircuit for the stage into subcircuits each of which may

be efficiently executed on a single GPU by taking advantage
of data parallelism. The basic idea behind the algorithm is
to group gates to amortize the cost of data parallelism on
modern GPUs (e.g., due to cost of launching kernels) and
do so without leading to an exponential blow-up of costs,
because grouping gates can increase the cost exponentially in
the number of qubits involved. We describe the kernelization
algorithm KERNELIZE in Section V. The algorithm PARTITION
completes by returning a list of stages, each of which consists

of a list of kernels.
The algorithm EXECUTE takes a list of kernelized stages and

input state consisting of a vector of amplitudes, and executes
each stage in order. For each stage, the algorithm permutes
the state vector and shards it into contiguous sections as
demanded by the qubit partition Q for that stage. To minimize
communication costs during this permutation and sharding
process, the algorithm keeps track of the current permutation P .
The algorithm then considers each shard in parallel and applies
the kernels of the stage to the shard sequentially. Because
our algorithm staged and kernelized the circuit to maximize
throughput for a distributed GPU architecture, each kernel can
run efficiently on a single GPU, by applying each kernel to all
the amplitudes in a shard of the state vector in a data parallel
fashion. If sufficiently many GPUs are available, then each
shard may be assigned to a GPU for parallel application. If,
however, fewer GPUs are available, the shards may be stored
in the shared DRAM at each node, and swapped in and out of
the GPUs for execution.

Our simulation algorithm builds on top of our PARTITION
and EXECUTE algorithms. Given the input circuit C and an
input state state, along with architecture parameters L,R,G,
our simulation algorithm SIMULATE starts by partitioning the
input circuit into a list of kernelized stages. It then calls the
algorithm EXECUTE to execute the stages.

Figure 1 shows an example application of the algorithm. We
note that PARTITION does not depend on state. Both STAGE
and KERNELIZE work for arbitrary input states.

IV. CIRCUIT STAGING

We present an algorithm for (circuit) staging that partitions
the circuit into stages, each of which is a contiguous subcircuit
of the input circuit, along with a partition of the qubits into
local, regional, and global sets such that each gate in the
subcircuit of the stage operates on the local qubits.

Definition 1 (Local, regional, and global qubits). For a
quantum circuit simulation with n qubits, let qi (0 ≤ i ≤ n−1)
be the i-th physical qubit. Let each shard include 2L states,
and let the DRAM of each node save 2L+R states.

• The first L physical qubits (i.e., q0, ..., qL−1) are local
qubits.

• The next R physical qubits (i.e., qL, ..., qL+R−1) are
regional qubits.

• The final G = n − L − R physical qubits (i.e.,
qL+R, ..., qn−1) are global qubits.

We categorize physical qubits into local, regional, and global
subsets based on the communications required to simulate the
application of a general quantum gate to these qubits. First,
applying a gate to a local qubit only requires accessing states
within the same shard, and therefore avoids communications.
Second, applying a gate to a regional qubit requires accessing
states in different shards stored on the same compute node,
which only requires inter-device (intra-node) communications.
Finally, applying a gate to a global qubit requires states

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

GPU0

GPU1

GPU2

GPU3

N
od
e 0

N
od
e 1

𝒑𝟎𝒑𝟏𝒑𝟐
𝒒𝟎𝒒𝟏𝒒𝟐

Original Mapping
𝒑𝟎𝒑𝟏𝒑𝟐
𝒒𝟎𝒒𝟐𝒒𝟏

New Mapping

(a) Sharding with inter-node
communication.

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

GPU0

GPU1

GPU2

GPU3

N
od
e 0

N
od
e 1

𝒑𝟎𝒑𝟏𝒑𝟐
𝒒𝟎𝒒𝟏𝒒𝟐

𝒑𝟎𝒑𝟏𝒑𝟐
𝒒𝟏𝒒𝟎𝒒𝟐

Original Mapping New Mapping

(b) Sharding with intra-node
(inter-GPU) communication.

Fig. 2: Sharding with different types of communication. The
simulation has 1 local, 1 regional, and 1 global qubit. pi − qj
indicates that the i-th physical qubit is mapped to the j-th
logical qubit. Inter-node communication is triggered if we
update any global qubits (Figure 2a), and only intra-node
communication is triggered otherwise (Figure 2b).

stored on different compute nodes and thus involves inter-node
commutations.

Given this partition of local, regional, and global qubits,
we aim to map logical qubits of a circuit to physical qubits
in a way that avoids excessive communication. To minimize
communication cost, we leverage a specific type of qubits in
certain types of gates, called insular qubits.

Definition 2 (Insular Qubit). For a single-qubit gate, the qubit
is insular if the unitary matrix of the gate is diagonal or
anti-diagonal, i.e., the non-zero entries are along the (anti)
diagonal. For multi-qubit controlled-U gates1, all control qubits
are insular2. All other qubits are non-insular.

Our idea of insular qubits was inspired by global gate
specialization introduced by Häner et al. [27]. Intuitively, for a
single-qubit gate with an insular qubit, computing each output
state only depends on one input state (since the gate’s unitary
matrix is diagonal or anti-diagonal), which allows Atlas to map
insular qubits to regional and/or global physical qubits without
introducing any extra communication. This property allows
Atlas to only consider the non-insular qubits of quantum gates
when mapping qubits.

Atlas staging algorithm (Algorithm 2) splits a quantum
circuit’s simulation into multiple stages, each of which includes
a subcircuit and uses a different mapping from logical to
physical qubits. Within each subcircuit, all non-insular qubits
of all gates can only operate on local physical qubits. This
approach avoids any inter-device or inter-node communications
within a stage and only requires all-to-all communications
between stages to perform qubit remapping.

We formalize circuit staging as a constrained optimization
problem and design a binary integer linear programming (ILP)

1A controlled-U gate has some control qubits controlling a U gate (can be
any unitary gate) on some target qubits. If at least one of the control qubits
is |0⟩, then the target remains unchanged. If all of the control qubits are |1⟩,
then the gate U is applied to the target qubits.

2In some controlled-U gates, any qubit can be chosen as the control qubit
without changing the output. In such gates, all qubits are insular.

algorithm to discover a staging strategy that minimizes the
total communication cost.

a) Circuit staging problem: Given an inter-node commu-
nication cost factor c, for a given input circuit C with n qubits
and an integer s, Atlas circuit staging algorithm splits C into
at most s stages C0, ..., Cs−1 and determines a qubit partition
Q of local/regional/global qubits for each stage, minimizing
the total communication cost:

s−1∑
i=1

(∣∣Qlocal
i \ Qlocal

i−1

∣∣+ c ·
∣∣∣Qglobal

i \ Qglobal
i−1

∣∣∣) . (2)

where Qlocal
i is the local qubit set of stage i and Qglobal

i is the
global qubit set of stage i.

∣∣Qlocal
i \ Qlocal

i−1

∣∣ is the number of
local qubits that need to be updated, approximating the inter-
GPU communication cost;

∣∣∣Qglobal
i \ Qglobal

i−1

∣∣∣ is the number
of global qubits that need to be updated, approximating the
extra inter-node communication cost. Although regional qubits
do not appear directly in (2), they are critical for allowing the
number of global qubits that need to be updated to be smaller
than the local one. Without regional qubits, any inter-GPU
communication will also be inter-node.

Let G denote the gates of the circuit C, and let E denote
their dependencies (adjacent gate pairs on the same qubit). Let
Aq,k and Bq,k (0 ≤ q < n, 0 ≤ k < s) denote whether the
q-th logical qubit is mapped to a local/global physical qubit at
the k-th stage, and let Fg,k (g ∈ G, 0 ≤ k < s) denote if the
gate g is finished by the end of the k-th stage. For each Aq,k

and Bq,k (k < s−1), we also introduce two ancillary variables
Sq,k and Tq,k that indicate whether the q-th logical qubit is
updated from local to non-local or from global to non-global
from the k-th to the (k + 1)-th stage (i.e., Sq,k = 1 if and
only if Aq,k = 0 and Aq,k+1 = 1; Tq,k = 1 if and only if
Bq,k = 0 and Bq,k+1 = 1). Note that Aq,k, Bq,k, Fg,k, Sq,k,
and Tq,k are all binary variables. Minimizing the total cost
of local-to-non-local and global-to-non-global updates with
constraints yields the following objective:

min

s−2∑
k=0

n−1∑
q=0

(Sq,k + c · Tq,k) (3)

subject to

Aq,k+1 ≤ Aq,k + Sq,k ∀q ∈ [0, n) ∀k ∈ [0, s− 1) (4)
Bq,k+1 ≤ Bq,k + Tq,k ∀q ∈ [0, n) ∀k ∈ [0, s− 1) (5)
Fg,k ≤ Fg,k+1 ∀g ∈ G ∀k ∈ [0, s− 1) (6)
Fg,k ≤ Fg,k−1 +Aq,k q is a non-insular qubit of g (7)
Fg1,k ≥ Fg2,k ∀(g1, g2) ∈ E ∀k ∈ [0, s) (8)
Fg,s−1 = 1 ∀g ∈ G (9)
Aq,k +Bq,k ≤ 1 ∀q ∈ [0, n) ∀k ∈ [0, s) (10)
n−1∑
q=0

Aq,k = L

n−1∑
q=0

Bq,k = G ∀k ∈ [0, s) (11)

We now describe these constraints. First, constraints 4, 5
and 6 can be derived from the definitions of Sq,k, Tq,k and

Algorithm 2 Atlas circuit staging algorithm.
1: function STAGE(C, L,R,G)
2: for s = 1, 2, . . . do
3: status,A,G, F = SOLVEILP(C, L,R,G, s)
4: if status = feasible then
5: Find (C0,Q0), . . . , (Cs−1,Qs−1) based on A, B, F
6: return (C0,Q0), . . . , (Cs−1,Qs−1)

Fg,k. Second, constraint 7 is a locality constraint that a gate g
can be executed at the k-th stage only if g’s non-insular qubits
q are all mapped to local physical qubits (i.e., Aq,k = 1).
Third, constraint 8 represents a dependency constraint that all
gates must be executed by following a topological order with
respect to dependencies between them. Fourth, constraint 9 is
derived from the completion constraint that all gates must be
executed in the s stages. Next, constraint 10 declares that any
qubit cannot be both local and global at the same time. Finally,
constraint 11 specifies the hardware constraint that each stage
has L local physical qubits and G global qubits.

b) ILP-based circuit staging.: For a given input circuit
C and an integer s that specifies the maximum number of
stages C can be partitioned into, Atlas sends the objective (i.e.,
Equation (3)) and all constraints (i.e., Equations (4) to (11))
to an off-the-shelf integer-linear-programming (ILP) solver,
which returns an assignment for matrices A,B, F, S, T that
minimizes the objective while satisfying all constraints. Atlas
then stages the circuit C into (C0,Q0), . . . , (Cs−1,Qs−1) based
on A, B and F , where Ci is a subcircuit and Qi is a qubit
partition into local/regional/global qubit sets. Specifically, for
a quantum gate g ∈ G, g will be executed by the stage with
index: min{k|Fg,k = 1}. Atlas maps the q-th logical qubit
to a local (physical) qubit at the k-th stage if Aq,k = 1, to a
global qubit at the k-th stage if Bq,k = 1, and to a regional
qubit if Aq,k = Bq,k = 0.

Algorithm 2 shows Atlas staging algorithm. It uses the ILP
solver as a subroutine and returns the first feasible result.

Theorem 1 (Optimality of STAGE). Algorithm 2 returns the
minimum feasible number of stages.

Proof. Algorithm 2 returns the first feasible result of the ILP
solver, and the loop in line 2 ensures that the number of stages
is minimized. The ILP constraints are the feasible constraints
for stages, so Algorithm 2 returns the minimum feasible number
of stages.

On top of the minimum number of stages, the ILP minimizes
the total communication cost (the ILP objective).

V. CIRCUIT KERNELIZATION

After partitioning an input circuit into multiple stages, Atlas
must efficiently execute the gates of each stage on GPUs.
GPU computations are organized as kernels, each of which
is a function simultaneously executed by multiple hardware
threads in a single-program-multiple-data (SPMD) fashion [28].
A straightforward approach to executing gates is to launch a
kernel for each gate, which yields suboptimal performance due

𝑞!

𝑞"
	𝒞[6]

𝑞#

𝑞$

	𝒞[0]

	𝒞[1]

	𝒞[2] 	𝒞[8]

	𝒞[3]

	𝒞[4] 	𝒞[7]

	𝒞[5] 	𝒞[9]

Fig. 3: Kernel examples. The two green dashed kernels satisfy
Constraint 1. The two blue dotted kernels do not satisfy
Constraint 1 and thus are not considered by the KERNELIZE
algorithm.

to the low arithmetic intensity of each gate. Another extreme is
to fuse all gates into a single kernel, which would exponentially
increase the amount of computation.

To improve simulation performance on GPUs, Atlas uses a
dynamic programming algorithm (Algorithm 3) to partition the
gates of a stage into kernels. We formulate circuit kernelization
as an optimization problem as follows.

Problem 1 (Optimal circuit sequence kernelization). Given
a cost function COST(·) that maps one or multiple kernels
(a sequence of gates) to their cost (i.e., a real number), the
optimal circuit sequence kernelization problem takes as input
a quantum circuit C represented as a sequence of gates, and
returns a kernel sequence K0, ...,Kb−1 that minimizes the total
execution cost:

b−1∑
i=0

COST(Ki) (12)

such that each kernel consists of a contiguous segment of the
gate sequence C.

We note that summing up the cost of individual kernels
(Equation (12)) is a faithful representation of the total cost,
because on a GPU, each kernel may execute in parallel, but
multiple kernels are executed sequentially.

Also, note that each kernel consisting of a contiguous
segment of the gate sequence C is a conservative requirement.
It is feasible to execute any kernel sequence that forms
a topologically equivalent sequence to C. However, there
are exponentially many ways to consider kernels with non-
contiguous segments. To consider them efficiently, we present
a key constraint on the kernels of the KERNELIZE algorithm
in Algorithm 3. We include a study of an algorithm that only
considers contiguous kernels in the extended version of this
paper [29].

Constraint 1 (Constraints on kernels). Each kernel K con-
sidered by the KERNELIZE algorithm satisfies the following
constraints:

1) Weak convexity: ∀ j1 < j2 < j3, if C[j1] ∈ K, C[j2] /∈
K, C[j3] ∈ K, then QUBITS(C[j1]) ∩ QUBITS(C[j2])
∩ QUBITS(C[j3]) = ∅. Informally, weak convexity re-
quires that for any three gates C[j1], C[j2], C[j3], if only
the middle gate is not in the kernel, then they cannot
share a qubit.

Algorithm 3 The KERNELIZE algorithm. The operators “+”
on lines 13 and 14 mean adding the cost and appending the
kernel set to the sequence. We maintain the order in place
in line 11 (replacing K \ {C[i]} with K) if the monotonicity
constraint in Constraint 1 applies to K, or move K to the end
of the kernel set otherwise. We require κ̃ to be a suffix of κ′

in line 13.
1: function KERNELIZE(C)
2: Input: A quantum circuit C represented as a sequence of

gates.
3: Output: A sequence of kernels.
4: // Suppose that we have an ordered kernel set κ in the first

i gates, DP [i, κ] stores the minimum cost to kernelize the first
i gates except for the gates in κ and the corresponding kernel
sequence.

5: DP [i, κ] = (∞, []) for all i, κ
6: DP [0, ∅] = (0, [])
7: for i = 0 to |C| − 1 do
8: for each κ such that ∃K, C[i] ∈ K ∈ κ and K satisfies

Constraint 1 do
9: κ̃ = κ \ {K}

10: if |K| > 1 then
11: DP [i+ 1, κ] = DP [i, κ̃ ∪ {K \ {C[i]}}]
12: else // K = {C[i]}
13: DP [i+1, κ] = min

κ′⊇κ̃

{
DP [i, κ′] + COST(κ′ \ κ̃)

}
14: DPbest = minκ {DP [|C|, κ] + COST(κ)}
15: return DPbest.kernels

2) Monotonicity: for any gate C[j] ̸∈ K, if C[j] shares a
qubit with K ↓ j then QUBITS(K) = QUBITS(K ↓ j)
where K ↓ j = K∩{C[0], C[1], . . . , C[j−1]}. Informally,
if we decide to exclude a gate from K while it shares a
qubit with K, then we fix the qubit set of K from that
gate on.

In Figure 3, the blue dotted kernel on the left violates weak
convexity because C[1], C[2] and C[4] share q2, and only C[2]
is not in the kernel. If we allow this kernel to be considered,
it will be mutually dependent with the kernel containing C[2],
yielding no feasible results. The blue dotted kernel on the right
does not violate weak convexity, but it violates monotonicity.
C[7] is excluded from the kernel while sharing the qubit q1
with the kernel, so the qubit set of the kernel should be fixed to
{q0, q1}. So it cannot include C[9]. In fact, including C[9] in this
kernel causes mutual dependency with the kernel {C[7], C[8]}.

Constraint 1 ensures the kernels to form a valid sequence
in Theorem 2.

Theorem 2 (Correctness of the KERNELIZE algorithm). Algo-
rithm 3 returns a kernel sequence such that concatenating the
kernels forms a sequence topologically equivalent to C.

Proof. Proof by induction on i that for each DP [i, κ].cost <
∞, appending κ to DP [i, κ].kernels results in the sequence
Cκ ↓ i which is topologically equivalent to a the sequence
C[0], C[1], . . . , C[i−1] (denote this sequence C ↓ i). This holds
for i = 0 where DP [i, ∅].kernels and C ↓ 0 are both empty.

Suppose the induction hypothesis holds for i. For i+ 1, for
any K satisfying Constraint 1, if |K| = 1, line 13 in the algo-

rithm makes the order of appending κ to DP [i+1, κ].kernels
the same as the order of appending κ′ to DP [i, κ′].kernels
for some κ′ when κ̃ is a suffix of κ′, so we can directly apply
the induction hypothesis to prove it for i+ 1.

Suppose |K| > 1. If the monotonicity constraint in Con-
straint 1 applies to K, line 11 just inserts C[i] to the end of K
in Cκ ↓ i. So it suffices to prove that C[i] does not depend on
any gate after the end of K in Cκ ↓ i, i.e., C[i] does not share
any qubit with these gates.

By monotonicity,

QUBITS(K) = QUBITS(K ↓ i). (13)

For any gate C[j2] after the last gate of K in the sequence
Cκ ↓ i before the insertion, by weak convexity, ∀ j1 < j2 < i
such that C[j1] ∈ K (we know that C[j2] /∈ K, C[i] ∈ K),
QUBITS(C[j1])∩QUBITS(C[j2])∩QUBITS(C[i]) = ∅. Because
all gates in K are before C[j2] in the sequence Cκ ↓ i before
the insertion,

QUBITS(K ↓ i) ∩ QUBITS(C[j2]) ∩ QUBITS(C[i]) = ∅ (14)

where K ↓ i is the kernel K before the insertion of C[i].
By Equation (13),

QUBITS(C[i]) ⊆ QUBITS(K ↓ i). (15)

Plugging this into Equation (14),

QUBITS(C[j2]) ∩ QUBITS(C[i]) = ∅ (16)

for any gate C[j2] after the last gate of K in the sequence
Cκ ↓ i before the insertion.

So we can safely insert C[i] to the end of K in Cκ ↓ i without
breaking the topological equivalence.

If the monotonicity constraint in Constraint 1 does not apply
to K, line 11 moves K to the end of Cκ ↓ i. Because the
monotonicity constraint does not apply to K, for any gate
C[j0] ∈ K, for any gate C[j] /∈ K after C[j0] in the original
sequence Cκ ↓ i, C[j] and C[j0] do not share any qubits. So
we can safely move the entire kernel K to the end without
breaking the topological equivalence.

In all cases, we have proved that Cκ ↓ (i+ 1) is topologically
equivalent to C ↓ (i+ 1). So Cκ ↓ |C| is topologically
equivalent to C ↓ |C|, which proves that any state in line 14 in
the algorithm returns a kernel sequence such that concatenating
the kernels forms a sequence topologically equivalent to C.

Theorem 3 (Constraint 1 allows all contiguous kernels). Any
kernel of a contiguous segment of the gate sequence C satisfies
Constraint 1.

Proof. For any kernel K of a contiguous segment of gates, for
any j1 < j2 < j3 such that C[j1] ∈ K, C[j2] /∈ K, we know
that C[j3] /∈ K by contiguity. So weak convexity holds, and
monotonicity holds because K ↓ j2 = K.

𝑞!

𝑞"

𝑞# 	𝑔#

𝑞$
	𝑔%

	𝑔&

Current
Iteration

𝑞'

𝑞(

	𝑔"

	𝑔!

	𝑔$

	𝑔)

	𝑔'

𝒦!: 𝑄𝑢𝑏𝑖𝑡𝑠 = 𝑞!, 𝑞", 𝑞# ,
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑏𝑙𝑒𝑄𝑢𝑏𝑖𝑡𝑠 = ∅

𝒦$: 𝑄𝑢𝑏𝑖𝑡𝑠 = 𝑞% ,
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑏𝑙𝑒𝑄𝑢𝑏𝑖𝑡𝑠 = 𝑞%, 𝑞$, 𝑞!, 𝑞", 𝑞#, 𝑞&

𝒦": 𝑄𝑢𝑏𝑖𝑡𝑠 = 𝑞#, 𝑞& ,
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑏𝑙𝑒𝑄𝑢𝑏𝑖𝑡𝑠 = {𝑞&}

𝒦#: 𝑄𝑢𝑏𝑖𝑡𝑠
= 𝑞!, 𝑞", 𝑞# ,
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑏𝑙𝑒𝑄𝑢𝑏𝑖𝑡𝑠
=

𝑞%, 𝑞$, 𝑞!,
𝑞", 𝑞#, 𝑞&

	𝑔(

	𝑔*

Fig. 4: An example DP state in the implementation. The circuit
sequence is C = [g0, g1, . . . , g9].

Algorithm 4 Maintaining the extensible qubit set EXTQ for
each kernel after each iteration of the for loop in line 8 of
Algorithm 3.

1: // C[i] ∈ K ∈ κ
2: if K = {C[i]} then // a new kernel
3: EXTQ(K, i+ 1) = ALLQUBITS
4: else
5: EXTQ(K, i+ 1) = EXTQ(K, i)

6: for K′ ∈ (κ \ K) do
7: if EXTQ(K′, i) = ALLQUBITS then
8: if QUBITS(C[i]) ∩ QUBITS(K′) ̸= ∅ then
9: EXTQ(K′, i+ 1) = QUBITS(K′) \ QUBITS(C[i])

10: else
11: EXTQ(K′, i+ 1) = ALLQUBITS

12: else
13: EXTQ(K′, i+ 1) = EXTQ(K′, i) \ QUBITS(C[i])

VI. IMPLEMENTATION

A. Reducing Size of DP State in KERNELIZE

In a quantum circuit, the number of gates is typically orders
of magnitude greater than the number of qubits. Therefore,
instead of tracking the gates for each kernel in Algorithm 3,
we maintain the qubit set as well as an extensible qubit set for
each kernel.

Definition 3 (Extensible qubit for a kernel). For a kernel
K at position i, i.e., K ↓ i, a qubit q is extensible if and
only if adding a gate operating on qubit q to K ↓ i satisfies
Constraint 1. Formally, a qubit q is extensible for K ↓ i if and
only if both of the following hold:

1) Weak convexity: ∀ j1 < j2 < i, if C[j1] ∈ K ↓ i, C[j2]
/∈ K ↓ i, then q /∈ QUBITS(C[j1]) ∩ QUBITS(C[j2]).

2) Monotonicity: for any gate C[j] /∈ K ↓ i, if j < i and
C[j] shares a qubit with K ↓ j, then q ∈ QUBITS(K ↓ j).

This definition is a direct characterization of Constraint 1:
adding the gate C[i] to a kernel K satisfies Constraint 1 if and
only if all qubits of C[i] are extensible for K ↓ i. For example,

the extensible qubit set is {q5} for K3 in Figure 4 – we can
only add gates operating only on this qubit to K3 to satisfy
Constraint 1.

We append the code fragment of Algorithm 4 to the end
of each iteration of the for loop in line 8 of Algorithm 3 to
maintain the extensible qubit set for each kernel.

Theorem 4. Algorithm 4 correctly computes the extensible
qubit set for each kernel.

Proof. Proof by induction on the position i. For the kernel K
such that C[i] ∈ K, if K = {C[i]}, all qubits are extensible
by Definition 3. Otherwise, EXTQ(K, i) is computed in the
previous iteration.

∀K′ ∈ (κ \ {{C[i]}}), suppose EXTQ(K′, i) is computed
correctly.

Case 0. Consider the kernel K such that C[i] ∈ K while
|K| > 1. In the condition for weak convexity, C[j2] cannot be
C[i] because it requires C[j2] /∈ K ↓ (i+ 1), so this constraint
is exactly the same as weak convexity for K ↓ i.

If monotonicity applies to K ↓ i, it still applies to
K ↓ (i+ 1), and QUBITS(K ↓ (i+ 1)) = QUBITS(K ↓ i); if
monotonicity does not apply to K ↓ i, C[j] cannot be C[i] in the
condition because it requires C[j] /∈ K ↓ (i+ 1), so it still does
not apply to K ↓ (i+ 1). So EXTQ(K, i+ 1) = EXTQ(K, i).

Now we case over each kernel K′ ∈ (κ\K). If monotonicity
applies to K′ ↓ i, there will be a gate C[j] /∈ K′ ↓ i satisfying
j < i and QUBITS(C[j]) ∪ QUBITS(K′ ↓ j) ̸= ∅, causing all
qubits in this intersection to be not extensible for K ↓ i by
weak convexity (picking j2 = j). So if the condition in line 7
of Algorithm 4 holds, i.e., all qubits are extensible for K′ ↓ i,
then monotonicity does not apply to K′ ↓ i.

Case 1. If the condition in line 8 of Algorithm 4 does not
hold, i.e., QUBITS(C[i]) ∩ QUBITS(K′ ↓ (i+ 1)) = ∅, then
monotonicity does not apply to K′ ↓ (i+ 1). Consider the
additional constraint of weak convexity for K′ ↓ (i+ 1) than
weak convexity for K′ ↓ i, that is, ∀ j1 < j2 = i, if C[j1] ∈
K′ ↓ (i+ 1), C[i] /∈ K′ ↓ (i+ 1), then q /∈ QUBITS(C[j1]) ∩
QUBITS(C[i]). However, QUBITS(C[j1]) ∩ QUBITS(C[i]) = ∅,
so EXTQ(K′, i+ 1) = ALLQUBITS.

Case 2. If the condition in line 8 of Algorithm 4 holds, i.e.,
QUBITS(C[i])∩QUBITS(K′ ↓ (i+ 1)) ̸= ∅, then monotonicity
applies to K′ ↓ (i+ 1) because C[i] /∈ K′ ↓ (i+ 1) and
C[i] shares a qubit with K′ ↓ (i+ 1). So only qubits in
QUBITS(K′ ↓ (i+ 1)) can possibly be extensible.
∀ q ∈ QUBITS(K′ ↓ (i+ 1)), q is extensible if and only if it

satisfies weak convexity. Because all qubits were extensible for
K′ ↓ i, we only need to consider the constraint on ∀j1 < j2 = i.
Because q ∈ QUBITS(K′ ↓ (i+ 1)), we can always find some
j1 < i satisfying q ∈ QUBITS(C[j1]) and C[j1] ∈ K′ ↓ (i+ 1),
so q is extensible if and only if q /∈ QUBITS(C[i]). Therefore,
EXTQ(K′, i+ 1) = QUBITS(K′ ↓ (i+ 1)) \ QUBITS(C[i]).

Case 3. If the condition in line 7 of Algorithm 4 does
not hold, i.e., not all qubits are extensible for K′ ↓ i, we
know that line 9 has been executed for some i′ < i (so
monotonicity applies to K′ ↓ (i′ + 1)), so EXTQ(K′, i′ +1) ⊆
QUBITS(K′ ↓ i′). Because line 13 of Algorithm 4 ensures

EXTQ(K′, i′′ + 1) ⊆ EXTQ(K′, i′′) for all i′ < i′′ < i, we
have EXTQ(K′, i) ⊆ QUBITS(K′ ↓ i′) ⊆ QUBITS(K′ ↓ i).

For each qubit q, if it is not in EXTQ(K′, i), it cannot be in
EXTQ(K′, i+1) because Definition 3 is more restrictive when
i increases; for each q ∈ EXTQ(K′, i), q ∈ EXTQ(K′, i+1) if
and only if it satisfies the additional weak convexity constraint
∀ j1 < j2 = i. Because EXTQ(K′, i) ⊆ QUBITS(K′ ↓ i),
we can always find j1 < i such that q ∈ QUBITS(C[j1])
and C[j1] ∈ K ↓ i, so q is extensible if and only if q /∈
QUBITS(C[i]). Therefore, we conclude that EXTQ(K′, i+1) =
EXTQ(K′, i) \ QUBITS(C[i]).

In all of these cases, we have proved the correctness of
EXTQ(K′, i+1) for any K′. So Algorithm 4 correctly computes
the extensible qubit set for each kernel.

Because we cannot add any gates to kernels with an empty
extensible qubit set such as K2, we compute their cost and
remove them from κ in line 13 of Algorithm 3. Because line 9
of Algorithm 4 restricts the extensible qubit set to be a subset
of the qubit set of K′, we no longer need to keep track of the
qubit set because it will no longer change.

Theorem 5 (Time complexity of the KERNELIZE algorithm).
With the extensible qubit sets maintained in Algorithm 4, the
KERNELIZE algorithm runs in O

((
3.2n
lnn

)n · |C|
)
, where n is

the number of qubits.

Proof. For each iteration i in Algorithm 3, let us compute the
maximum number of kernel sets κ that Atlas must consider.

We observe that if we consider the qubit set for each kernel
with the extensible qubit set being all qubits, and the extensible
qubit set for other kernels, any two of these sets do not intersect.
This can be proven by induction on i and the fact that whenever
we add QUBITS(C[i]) to K, we effectively remove these qubits
from all other sets.

Because kernels with empty extensible qubit sets are removed
from κ, there are at most n kernels in κ and the number of
ways to partition all qubits into disjoint qubit sets is at most the

Bell number Bn+1, which is less than
(

0.792(n+1)
ln(n+2)

)n+1

[30].
Each qubit set can be either the qubit set or the extensible
qubit set of a kernel, so we need to multiply this number by at
most 2n; each kernel can be either fusion or shared-memory,
so we need to multiply this number by another 2n. With the
extensible qubit sets maintained, the order of kernels does not
affect the DP transitions, so the number of different kernel sets
is at most 4nBn+1. Each iteration of the for loop in line 8 of
Algorithm 3 takes polynomial time, so the time per iteration i
is at most O

((
3.2n
lnn

)n)
. There are |C| iterations, so the total

time complexity is O
((

3.2n
lnn

)n · |C|
)
.

We also implemented other optimizations in the KERNELIZE
algorithm. See the extended version [29] for details.

B. Cost Function in KERNELIZE

The cost function used in Equation (12) should faithfully rep-
resent the running time of each kernel. Inspired by HyQuas [26],
we use two approaches to execute each kernel:

TABLE I: Our benchmark circuits and their size (number of gates).

Circuit Description Number of qubits
Name 28 29 30 31 32 33 34 35 36

ae amplitude estimation 514 547 581 616 652 689 727 766 806
dj Deutsch–Jozsa algorithm 82 85 88 91 94 97 100 103 106
ghz GHZ state 28 29 30 31 32 33 34 35 36
graphstate graph state 56 58 60 62 64 66 68 70 72
ising Ising model 302 313 324 335 346 357 368 379 390
qft quantum Fourier transform 406 435 465 496 528 561 595 630 666
qpeexact exact quantum phase estimation 432 463 493 524 559 593 628 664 701
qsvm quantum support vector machine 274 284 294 304 314 324 334 344 354
su2random SU2 ansatz with random parameters 1246 1334 1425 1519 1616 1716 1819 1925 2034
vqc variational quantum classifier 1873 1998 2127 2260 2397 2538 2683 2832 2985
wstate W state 109 113 117 121 125 129 133 137 141

1) Fusion: Fuse all gates in a kernel into a single gate
by pre-computing the product of the gate matrices and
executing that single gate using cuQuantum [31]. The
cost function maps the number of qubits in the kernel
to a constant, reflecting the running time of a matrix
multiplication of that size.

2) Shared-memory: Load the state vector into GPU shared
memory in batches and execute the gates one by one
instead of fusing them to a single matrix. 3 The cost
function is α+

∑
g∈K COST(g), where α is a constant

that corresponds to the time to load a micro-batch of
state coefficients into GPU shared memory, and COST(g)
is the time to simulate the application of the gate g in
the GPU shared memory.

The way to determine these constant values is described in
Section VII-A.

In addition to the qubit set and the extensible qubit set, we
add a Boolean tag for the type of each kernel (fusion or shared-
memory) in KERNELIZE, and maintain the cost of the kernel
during the DP algorithm according to the type. Whenever a
new kernel is created, we generate two copies of DP states
with the new kernel’s type being fusion or shared-memory
correspondingly.

C. Atlas
We built our system Atlas on top of FlexFlow [32], a

distributed multi-GPU system for DNN training. Atlas uses the
mapper interface of FlexFlow to distribute the state vector
across the DRAM and GPU device memory of a GPU
cluster, and uses Legion [33], FlexFlow’s underlying task-
based runtime, to launch simulation tasks on CPUs and GPUs
and automatically overlap communications with computations.
Furthermore, Atlas uses the NCCL library [34] to perform inter-
GPU communication for sharding. We set the cost factor of
the inter-node communication in the circuit staging algorithm
c = 3 in Equation (2).

3Shared-memory kernels correspond to SHM-GROUPING in HyQuas.
Similar to HyQuas, to improve the I/O efficiency of shared-memory kernels,
we require the three least significant qubits of the state vector to be in all
shared-memory kernels. As a result, each state vector load consists of at least
23 = 8 complex numbers (i.e., 128 bytes as each complex number consists
of 2 double-precision floating-point numbers).

Atlas is publicly available as an open-source project [35]
and also in the artifact supporting this paper [36].

VII. EVALUATION

A. Experimental Setup

We use the Perlmutter supercomputer [37] to evaluate Atlas.
Each compute node is equipped with an AMD EPYC 7763 64-
core 128-thread processor, 256 GB DRAM, and four NVIDIA
A100-SXM4-40GB GPUs. The nodes are connected with HPE
Slingshot 200 Gb/s interconnects. The programs are compiled
using GCC 12.3.0, CUDA 12.2, and NCCL 2.19.4.

The cost function used in KERNELIZE has some constants
that require benchmarking on the GPU. For fusion kernels, we
measure their execution time with different numbers of qubits.
For shared-memory kernels, we measure the run time of an
empty shared-memory kernel to estimate the cost of loading a
state vector to GPU shared memory, and profile the run times
for different types of gates using the GPU shared memory.

a) Benchmarks: We collect 11 types of scalable quantum
circuits from the MQT Bench [38] and NWQBench [39], where
we can select the desired number of qubits for each circuit type.
This allows us to conduct a weak-scaling evaluation, where we
can compare the performance of Atlas and existing GPU-based
quantum circuit simulators using different numbers of GPUs.
Table I summarizes the circuits used in our evaluation.

b) Preprocessing circuits: To speedup simulation, we
partition each circuit by (1) splitting it into stages using the
STAGE algorithm, and (2) kernelizing each stage using the
KERNELIZE algorithm. This preprocessing needs to be done
once per circuit and finishes in 7.2 seconds on average for
each circuit in a single thread on an Intel Xeon W-1350 @
3.30GHz CPU. In our evaluation, we use the PuLP library [40]
with the HiGHS solver [41] for ILP. The ILP-based STAGE
algorithm takes 3.3 seconds on average, and KERNELIZE takes
3.9 seconds on average. A detailed analysis of the running
time of KERNELIZE is included in the extended version [29].

B. End-to-end Performance

We first compare Atlas against existing distributed GPU-
based quantum circuit simulators, including HyQuas [26],
cuQuantum [31], and Qiskit [19]. UniQ [42] is extremely

1
(2.1x)

2
(1.2x)

4
(2.1x)

8
(1.4x)

16
(1.6x)

32
(1.9x)

64
(3.1x)

128
(3.9x)

256
(3.6x)

Number of GPUs / Speedup of Atlas

0

2

4

6

8

10

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum
Qiskit

(a) ae

1
(0.8x)

2
(1.0x)

4
(2.2x)

8
(1.3x)

16
(1.3x)

32
(2.5x)

64
(4.9x)

128
(5.8x)

256
(4.9x)

Number of GPUs / Speedup of Atlas

0

2

4

6

8

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum
Qiskit

(b) qft

1
(0.9x)

2
(0.9x)

4
(2.0x)

8
(1.4x)

16
(1.9x)

32
(2.2x)

64
(1.7x)

128
(3.1x)

256
(2.8x)

Number of GPUs / Speedup of Atlas

0

2

4

6

8

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum
Qiskit

(c) graphstate

1
(1.3x)

2
(1.1x)

4
(2.6x)

8
(1.4x)

16
(1.8x)

32
(2.1x)

64
(2.0x)

128
(1.9x)

256
(3.4x)

Number of GPUs / Speedup of Atlas

0

2

4

6

8

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum
Qiskit

(d) wstate

1
(1.4x)

2
(1.3x)

4
(1.7x)

8
(1.3x)

16
(1.4x)

32
(2.0x)

64
(2.4x)

128
(2.5x)

256
(2.9x)

Number of GPUs / Speedup of Atlas

0

2

4

6

8

10

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum
Qiskit

(e) qsvm

1
(1.0x)

2
(0.8x)

4
(1.1x)

8
(1.4x)

16
(1.8x)

32
(2.1x)

64
(2.1x)

128
(2.8x)

256
(2.1x)

Number of GPUs / Speedup of Atlas

0

2

4

6

8

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum
Qiskit

(f) ghz

1
(0.7x)

2
(1.3x)

4
(2.6x)

8
(2.1x)

16
(1.5x)

32
(2.0x)

64
(3.3x)

128
(4.6x)

256
(4.7x)

Number of GPUs / Speedup of Atlas

0

2

4

6

8

10

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum
Qiskit

(g) qpeexact

1
(0.9x)

2
(1.0x)

4
(1.4x)

8
(1.2x)

16
(1.3x)

32
(2.1x)

64
(2.3x)

128
(3.6x)

256
(4.4x)

Number of GPUs / Speedup of Atlas

0

2

4

6

8

10

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum

(h) su2random

1
(1.1x)

2
(0.9x)

4
(1.3x)

8
(0.9x)

16
(1.0x)

32
(1.4x)

64
(2.0x)

128
(3.0x)

256
(4.9x)

Number of GPUs / Speedup of Atlas

0
2
4
6
8

10
12
14

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum

(i) vqc

1
(2.0x)

2
(1.3x)

4
(1.9x)

8
(1.7x)

16
(1.8x)

32
(1.9x)

64
(2.1x)

128
(2.7x)

256
(3.3x)

Number of GPUs / Speedup of Atlas

0

2

4

6

8

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum
Qiskit

(j) ising

1
(1.0x)

2
(1.0x)

4
(1.5x)

8
(1.2x)

16
(1.9x)

32
(2.0x)

64
(2.0x)

128
(2.4x)

256
(3.5x)

Number of GPUs / Speedup of Atlas

0

2

4

6

8

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum
Qiskit

(k) dj

1
(1.1x)

2
(0.9x)

4
(1.3x)

8
(0.9x)

16
(1.0x)

32
(1.4x)

64
(2.0x)

128
(3.0x)

256
(4.9x)

Number of GPUs / Speedup of Atlas

100

101

102

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
HyQuas
cuQuantum
Qiskit

(l) vqc (log scale)

Fig. 5: Weak scaling of Atlas, HyQuas, cuQuantum, and Qiskit with 28 local qubits as the number of global qubits increases
from 0 (on 1 GPU) to 8 (on 256 GPUs). Qiskit is slow and usually does not fit into our charts.

similar to HyQuas in state-vector-based GPU-based quantum
circuit simulation, so we do not compare with UniQ. Both
Qiskit and cuQuantum use the Qiskit Python interface as
the frontend. cuQuantum uses Aer’s cuStateVec integration
(cusvaer) to simulate quantum circuits, and Qiskit directly
uses its native Aer GPU backend. All baselines perform state-
vector-based simulation and directly store the entire state vector
on GPUs. While Atlas also supports more scalable quantum
circuit simulation by offloading the state vector to a much larger
CPU DRAM, to conduct a fair comparison, in this experiment,

we disable Atlas’ DRAM offloading and directly store the
entire state vector on GPUs. We further evaluate Atlas’ DRAM
offloading performance in Section VII-C.

Figure 5 shows the end-to-end simulation performance of
the 11 circuit families on up to 256 GPUs (on 64 nodes).
We use 28 local qubits and increase the number of non-local
qubits from 0 (on 1 GPU) to 8 (on 256 GPUs). The number of
regional qubits is at most 2 (there are 4 GPUs in each node).
Qiskit is slow, so we only evaluate it on up to 4 GPUs and
present a log-scale plot in Figure 5l.

1
(0%)

2
(22%)

4
(13%)

8
(52%)

16
(61%)

32
(66%)

64
(65%)

128
(65%)

256
(63%)

Number of GPUs / Communication Time Percentage

0

200

400

600

800

1000
Av

er
ag

e
Ti

m
e

(m
s) Total

Communication Time

Fig. 6: Simulation time breakdown: The average communica-
tion time and its percentage in the average total simulation
time of Atlas.

28
(6x)

29
(45x)

30
(57x)

31
(91x)

32
(105x)

Number of Qubits
(Speedup of Atlas)

1

10

100

Si
m

ul
at

io
n

Ti
m

e
(s

)

Atlas
QDAO

Fig. 7: Atlas outperforms QDAO
by 61× on average. Log-scale sim-
ulation time (single GPU) with
DRAM offloading for qft cir-
cuits.

1 2 4
Number of GPUs

0
1
2
3
4
5
6

Si
m

ul
at

io
n

Ti
m

e
(s

) Atlas

Fig. 8: DRAM offloading
scales. Atlas simulation
time of a 32-qubit qft
circuit with 1, 2, and 4
GPUs.

Atlas is up to 20.2× (4.0× on average) faster than HyQuas,
7.2× (3.2× on average) faster than cuQuantum, and 2,126×
(286× on average) faster than Qiskit across all types of circuits
and possible numbers of GPUs supported by the baselines. The
speedups over existing systems are achieved by two important
optimizations. First, Atlas’ ILP-based circuit staging algorithm
can discover a staging strategy that minimizes expensive inter-
node communications, allowing Atlas to scale extremely well
as the number of GPUs increases. For example, to scale
graphstate from 28 qubits (on 1 GPU) to 36 qubits (on
256 GPUs), HyQuas’ simulation time increases by 267.9×,
while the simulation time of Atlas only increases by 13.7×.
Second, the DP-based KERNELIZE algorithm enables Atlas to
achieve high-performance circuit performance on each GPU.

Figure 6 breaks down the total simulation time into com-
munication time (including intra-node and inter-node com-
munications) and computation time. We take the average of
the 11 benchmark circuits for each number of GPUs. Inter-
node communication is much more expensive than intra-node
communication, so the computation is dominant when there is
only one node (at most 4 GPUs). When the number of nodes
increases, inter-node communication becomes dominant. We

15 17 19 21 23 25 27 29 31
Number of local qubits

0
2
4
6

G
eo

m
ea

n
of

 #
st

ag
es Atlas SnuQS

Fig. 9: Number of stages, Atlas versus SnuQS: The geometric
mean over all our benchmark circuits with 31 qubits.

ae dj ghz
grap

hsta
te ising qft

qpee
xact qsvm

su2r
ando

m vqcwsta
te
Geom

ean

Circuit Name

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Re
la

ti
ve

 G
eo

m
ea

n
Co

st

0.
40

1

0.
99

9

0.
81

6

0.
69

9

0.
60

7

0.
37

0

0.
41

7

0.
99

9

0.
42

5

0.
42

3 0.
68

6

0.
58

3

Baseline Atlas

Fig. 10: Kernelization effectiveness: The relative geometric
mean cost of KERNELIZE compared to greedy packing up to
5 qubits.

note that the communication time takes a greater portion with
2 GPUs than with 4 GPUs, because each pair of the 4 GPUs
in the node is connected. The total bandwidth of each GPU
increases by 3× when the number of GPUs available increases
from 2 to 4, so intra-node communication is faster with 4
GPUs than with 2 GPUs.

C. DRAM Offloading

In addition to improving quantum circuit simulation perfor-
mance, another key advantage of Atlas over existing systems
is its ability to scale to larger circuits that go beyond the GPU
memory capacity. As described in Section III, Atlas does not
require that the entire state vector of a quantum circuit be
stored in GPU memory and uses DRAM offloading to support
larger circuits. QDAO [43] also uses DRAM offloading to
support larger circuits and scales to 32 qubits. We compare
Atlas with QDAO with the Qiskit backend. We use 28 local
qubits, and all remaining qubits are regional. For QDAO, we
set m = 28, and t = 19 which runs the fastest.

Figure 7 shows the simulation performance of qft circuits
with different numbers of qubits on a single GPU. For a 28-
qubit circuit, the GPU memory is sufficient, so both Atlas
and QDAO are fast; for circuits with 29 to 32 qubits, Atlas
runs 74× faster than QDAO on average, and also scales better.
The speedups are also achieved by both the STAGE and the
KERNELIZE algorithms.

Figure 8 shows the simulation performance of the 32-qubit
qft circuit on 1, 2, and 4 GPUs. Atlas scales across multiple
GPUs. The simulation time of QDAO stays the same when the
number of GPUs increases.

D. Circuit Staging

We further compare the ILP-based circuit staging algorithm
with heuristic-based approaches in existing simulators. In
particular, we use the heuristics used in SnuQS as a baseline,
which greedily selects the qubits with more gates operating on
non-local gates to form a stage and uses the number of total
gates as a tiebreaker [25]. Other works did not describe how
the heuristics were implemented.

Similar to Section VII-B, we set at most 2 non-local qubits
to be regional, and all other non-local qubits to be global.
Figure 9 shows the geometric mean number of stages for all 11
circuits with 31 qubits in Table I. Our circuit staging algorithm
is guaranteed to return the minimum number of stages by
Theorem 1, and it always outperforms SnuQS’ approach. Note
that SnuQS may give a worse circuit partition for the same
circuit when the number of local qubits increases (from 23 to
24 in Figure 9), but this is guaranteed not to happen in our
ILP-based approach.

E. Circuit Kernelization

We evaluate our KERNELIZE algorithm and compare it with
a baseline that greedily packs gates into fusion kernels of up to
5 qubits, the most cost-efficient kernel size in the cost function
used in Section VII-A.

Each circuit family exhibits a pattern, so we take the
geometric mean of the cost for 9 circuits with the number of
qubits from 28 to 36 for each circuit family. Figure 10 shows
that the greedy baseline performs well in dj and qsvm circuits,
but it does not generalize to other circuits. The KERNELIZE
algorithm is able to exploit the pattern for each circuit and
find a low-cost kernel sequence accordingly.

VIII. RELATED WORK

a) Distributed quantum circuit simulators: Recent work
has introduced a number of state-vector-based quantum circuit
simulators that avail parallelism processing elements on the
state vector in a data-parallel fashion [23], [25], [26], [42]–
[46]. Even though the state vector can be trivially partitioned,
applying quantum gates on it can easily result in a large amount
of communication (e.g., between memory and processors and
between different nodes). Researchers have therefore proposed
circuit partitioning techniques that coalesce computations that
operate on a smaller subset of the state space as a single
partition so as to reduce communication costs [24]–[26], [47].
An important limitation of all this prior work is that they
use heuristic techniques to partition the circuits, leading to
suboptimal behavior. We formulate this circuit partitioning
problem as an integer linear programming (ILP) problem, which
can be solved by applying existing solvers optimally.

b) Quantum gate fusion: Prior work has developed gate
fusion techniques that use various heuristics to fuse multiple
gates that operate on nearby qubits into a single larger gate
which can then be applied at once [19], [24], [26], [48]. For
example, Qulacs either leaves it to the user or applies the “light”
or “heavy” approaches to merging gates [24]. In this paper, we
formulate the circuit kernelization problem of grouping gates

into kernels and propose a dynamic programming algorithm
to systematically solve this problem.

c) Domain-specific quantum circuit simulators: This
paper focuses on the general quantum circuit simulation
problem and makes no assumption about input circuits. There
has been significant research on developing simulators for
specific classes of quantum circuits [42], [49]–[55].

In addition, our work considers an idealized quantum
computing environment and does not attempt to simulate errors
experienced by modern, NISQ-era quantum computers. There
has also been work on developing error-aware quantum circuit
simulators [56], [57]. Error simulation is more expensive,
because of the need to track errors.

IX. LIMITATION

Although our techniques can improve run time, the running
time of algorithms STAGE and KERNELIZE may depend on the
circuit structure, the circuit size, and the ILP solver used. For
example, Theorem 5 establishes an exponential upper bound in
the number of qubits for the running time of KERNELIZE. But
we do not know if this upper bound is tight: our algorithms
only take a few seconds on average to preprocess each circuit
in our evaluation. We believe that improving the scalability of
algorithms STAGE and KERNELIZE is an important problem
and will need to be revisited when quantum circuit simulators
are able to handle larger circuits. Future work could narrow
the gap between theoretical time complexity and practice and
explore the trade-off between preprocessing and simulation.

X. CONCLUSION

In this paper, we propose an ILP-based algorithm STAGE
that minimizes the communication cost between GPUs, and
a dynamic programming algorithm, KERNELIZE, that ensures
efficient kernelization of the GPU work. We then present an
implementation of a distributed, multi-GPU quantum circuit
simulator, called Atlas, that realizes the proposed algorithms.
Previous work also partitioned the circuit for improved
communication and kernelization, but relied on heuristics to
determine the partitioning. We show that it is possible to achieve
substantial improvements by using provable algorithms that
can partition the circuit hierarchically.

ACKNOWLEDGEMENT

We thank the anonymous SC reviewers for their feedback on
this work. This research is partially supported by NSF awards
CNS-2147909, CNS-2211882, CNS-2239351, CCF-1901381,
CCF-2115104, CCF-2119352, and CCF-2107241 and research
awards from Amazon, Cisco, Google, Meta, Oracle, Qualcomm,
and Samsung. This research used resources of the National
Energy Research Scientific Computing Center (NERSC), a
U.S. Department of Energy Office of Science User Facility
located at Lawrence Berkeley National Laboratory, operated
under Contract No. DE-AC02-05CH11231 using NERSC award
DDR-ERCAP0023403.

REFERENCES

[1] M. A. Nielsen and I. L. Chuang, “Quantum information and quantum
computation,” Cambridge: Cambridge University Press, vol. 2, no. 8,
p. 23, 2000.

[2] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” arXiv preprint arXiv:2003.06557, 2020.

[3] R. Orús, S. Mugel, and E. Lizaso, “Quantum computing for finance:
Overview and prospects,” Reviews in Physics, vol. 4, p. 100028, 2019.

[4] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202,
2017.

[5] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms
for supervised and unsupervised machine learning,” arXiv preprint
arXiv:1307.0411, 2013.

[6] M. Schuld and N. Killoran, “Quantum machine learning in feature hilbert
spaces,” Physical review letters, vol. 122, no. 4, p. 040504, 2019.

[7] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon,
“Simulated quantum computation of molecular energies,” Science, vol.
309, no. 5741, pp. 1704–1707, 2005.

[8] R. Babbush, J. McClean, D. Wecker, A. Aspuru-Guzik, and N. Wiebe,
“Chemical basis of trotter-suzuki errors in quantum chemistry simulation,”
Physical Review A, vol. 91, no. 2, p. 022311, 2015.

[9] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[10] G. Q. A. lab, “A preview of bristlecone, google’s new
quantum processor,” https://ai.googleblog.com/2018/03/
a-preview-of-bristlecone-googles-new.html, 2018.

[11] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo,
J. Qin, D. Wu, X. Ding, Y. Hu et al., “Quantum computational advantage
using photons,” Science, vol. 370, no. 6523, pp. 1460–1463, 2020.

[12] C. Q. Choi, “Ibm unveils 433-qubit osprey chip,” Mar 2023. [Online].
Available: https://spectrum.ieee.org/ibm-quantum-computer-osprey

[13] D. Castelvecchi, “Ibm releases first-ever 1,000-qubit quantum
chip,” Dec 2023. [Online]. Available: https://www.nature.com/articles/
d41586-023-03854-1

[14] J. Preskill, “Quantum computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, aug 2018. [Online]. Available: https:
//doi.org/10.22331%2Fq-2018-08-06-79

[15] A. D. Corcoles, A. Kandala, A. Javadi-Abhari, D. T. McClure, A. W.
Cross, K. Temme, P. D. Nation, M. Steffen, and J. M. Gambetta,
“Challenges and opportunities of near-term quantum computing systems,”
Proceedings of the IEEE, vol. 108, no. 8, pp. 1338–1352, aug 2020.
[Online]. Available: https://doi.org/10.1109%2Fjproc.2019.2954005

[16] A. Amariutei and S. Caraiman, “Parallel quantum computer simulation
on the gpu,” in 15th International Conference on System Theory, Control
and Computing. IEEE, 2011, pp. 1–6.

[17] A. Avila, A. Maron, R. Reiser, M. Pilla, and A. Yamin, “Gpu-aware
distributed quantum simulation,” in Proceedings of the 29th Annual ACM
symposium on applied computing, 2014, pp. 860–865.

[18] A. Avila, R. H. Reiser, M. L. Pilla, and A. C. Yamin, “Optimizing
d-gm quantum computing by exploring parallel and distributed quantum
simulations under gpus arquitecture,” in 2016 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2016, pp. 5146–5153.

[19] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim,
D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F.
Chen et al., “Qiskit: An open-source framework for quantum computing,”
Accessed on: Mar, vol. 16, 2019.

[20] E. Gutiérrez, S. Romero, M. A. Trenas, and E. L. Zapata, “Quantum
computer simulation using the cuda programming model,” Computer
Physics Communications, vol. 181, no. 2, pp. 283–300, 2010.

[21] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “Quest and high
performance simulation of quantum computers,” Scientific reports, vol. 9,
no. 1, pp. 1–11, 2019.

[22] P. Zhang, J. Yuan, and X. Lu, “Quantum computer simulation on
multi-gpu incorporating data locality,” in Algorithms and Architectures
for Parallel Processing: 15th International Conference, ICA3PP 2015,
Zhangjiajie, China, November 18-20, 2015, Proceedings, Part I 15.
Springer, 2015, pp. 241–256.

[23] M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik, “qhipster: The
quantum high performance software testing environment,” arXiv preprint
arXiv:1601.07195, 2016.

[24] Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga, M. Nakadai, J. Chen,
K. M. Nakanishi, K. Mitarai, R. Imai, S. Tamiya et al., “Qulacs: a fast
and versatile quantum circuit simulator for research purpose,” Quantum,
vol. 5, p. 559, 2021.

[25] D. Park, H. Kim, J. Kim, T. Kim, and J. Lee, “SnuQS: scaling quantum
circuit simulation using storage devices,” in Proceedings of the 36th ACM
International Conference on Supercomputing, ser. ICS ’22. New York,
NY, USA: Association for Computing Machinery, Jun. 2022, pp. 1–13.
[Online]. Available: https://dl.acm.org/doi/10.1145/3524059.3532375

[26] C. Zhang, Z. Song, H. Wang, K. Rong, and J. Zhai, “Hyquas:
Hybrid partitioner based quantum circuit simulation system on
gpu,” in Proceedings of the ACM International Conference on
Supercomputing, ser. ICS ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 443–454. [Online]. Available:
https://doi.org/10.1145/3447818.3460357

[27] T. Häner and D. S. Steiger, “0.5 petabyte simulation of a 45-qubit
quantum circuit,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’17.
New York, NY, USA: Association for Computing Machinery, Nov. 2017,
pp. 1–10. [Online]. Available: https://doi.org/10.1145/3126908.3126947

[28] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, “A single-
program-multiple-data computational model for epex/fortran,” Parallel
Computing, vol. 7, no. 1, pp. 11–24, 1988.

[29] M. Xu, S. Cao, X. Miao, U. A. Acar, and Z. Jia, “Atlas: Hierarchical
partitioning for quantum circuit simulation on gpus (extended version),”
2024. [Online]. Available: https://arxiv.org/abs/2408.09055

[30] D. Berend and T. Tassa, “Improved bounds on bell numbers and
on moments of sums of random variables,” vol. 30, no. 2, pp.
185–205. [Online]. Available: https://www.math.uni.wroc.pl/∼pms/files/
30.2/Article/30.2.1.pdf

[31] H. Bayraktar, A. Charara, D. Clark, S. Cohen, T. Costa, Y.-L. L. Fang,
Y. Gao, J. Guan, J. Gunnels, A. Haidar, A. Hehn, M. Hohnerbach,
M. Jones, T. Lubowe, D. Lyakh, S. Morino, P. Springer, S. Stanwyck,
I. Terentyev, S. Varadhan, J. Wong, and T. Yamaguchi, “cuQuantum
SDK: A high-performance library for accelerating quantum science.”
[Online]. Available: http://arxiv.org/abs/2308.01999

[32] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism
for deep neural networks,” in Proceedings of the 2nd Conference on
Systems and Machine Learning, ser. SysML’19, 2019.

[33] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, 2012.

[34] “Nvidia nccl,” https://developer.nvidia.com/nccl, 2021.
[35] “Atlas: High-performance gpu-based quantum circuit simulator,” https:

//github.com/quantum-compiler/atlas, 2024.
[36] M. Xu and S. Cao, “Artifact for sc24 paper: Atlas: Hierarchical

partitioning for quantum circuit simulation on gpus,” Jun. 2024. [Online].
Available: https://doi.org/10.5281/zenodo.12588145

[37] “The perlmutter supercomputer,” https://docs.nersc.gov/systems/
perlmutter/, 2023.

[38] N. Quetschlich, L. Burgholzer, and R. Wille, “MQT Bench: Benchmark-
ing software and design automation tools for quantum computing,” 2022,
MQT Bench is available at https://www.cda.cit.tum.de/mqtbench/.

[39] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “Qasmbench: A low-level
qasm benchmark suite for nisq evaluation and simulation,” arXiv preprint
arXiv:2005.13018, 2021.

[40] I. Dunning, S. Mitchell, and M. O’Sullivan, “PuLP: A linear programming
toolkit for python.” [Online]. Available: https://optimization-online.org/
?p=11731

[41] Q. Huangfu and J. A. J. Hall, “Parallelizing the dual revised
simplex method,” vol. 10, no. 1, pp. 119–142. [Online]. Available:
https://doi.org/10.1007/s12532-017-0130-5

[42] C. Zhang, H. Wang, Z. Ma, L. Xie, Z. Song, and J. Zhai, “UniQ: A
unified programming model for efficient quantum circuit simulation,”
in SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2022, pp. 1–16, ISSN: 2167-4337.

[43] Y. Zhao, Y. Chen, H. Li, Y. Wang, K. Chang, B. Wang, B. Li, and
Y. Han, “Full state quantum circuit simulation beyond memory limit,” in
2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD). IEEE, 2023, pp. 1–9.

[44] A. Zulehner and R. Wille, “Advanced simulation of quantum compu-
tations,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 5, pp. 848–859, 2018.

https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://spectrum.ieee.org/ibm-quantum-computer-osprey
https://www.nature.com/articles/d41586-023-03854-1
https://www.nature.com/articles/d41586-023-03854-1
https://doi.org/10.22331%2Fq-2018-08-06-79
https://doi.org/10.22331%2Fq-2018-08-06-79
https://doi.org/10.1109%2Fjproc.2019.2954005
https://dl.acm.org/doi/10.1145/3524059.3532375
https://doi.org/10.1145/3447818.3460357
https://doi.org/10.1145/3126908.3126947
https://arxiv.org/abs/2408.09055
https://www.math.uni.wroc.pl/~pms/files/30.2/Article/30.2.1.pdf
https://www.math.uni.wroc.pl/~pms/files/30.2/Article/30.2.1.pdf
http://arxiv.org/abs/2308.01999
https://developer.nvidia.com/nccl
https://github.com/quantum-compiler/atlas
https://github.com/quantum-compiler/atlas
https://doi.org/10.5281/zenodo.12588145
https://docs.nersc.gov/systems/perlmutter/
https://docs.nersc.gov/systems/perlmutter/
https://www.cda.cit.tum.de/mqtbench/
https://optimization-online.org/?p=11731
https://optimization-online.org/?p=11731
https://doi.org/10.1007/s12532-017-0130-5

[45] Z.-Y. Chen, Q. Zhou, C. Xue, X. Yang, G.-C. Guo, and G.-P. Guo,
“64-qubit quantum circuit simulation,” Science Bulletin, vol. 63, no. 15,
pp. 964–971, 2018.

[46] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using data
compression,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–24.

[47] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas,
D. Garcı́a-Martı́n, A. Garcia-Saez, J. I. Latorre, and S. Carrazza. Qibo: a
framework for quantum simulation with hardware acceleration. [Online].
Available: https://arxiv.org/abs/2009.01845v2

[48] S. Westrick, P. Liu, B. Kang, C. McDonald, M. Rainey, M. Xu, J. Arora,
Y. Ding, and U. A. Acar, “Grafeyn: Efficient parallel sparse simulation of
quantum circuits,” in Proceedings of the IEEE International Conference
on Quantum Computing and Engineering, 2024.

[49] R. Jozsa and N. Linden, “On the role of entanglement in quantum-
computational speed-up,” Proceedings of the Royal Society of London.
Series A: Mathematical, Physical and Engineering Sciences, vol. 459,
no. 2036, pp. 2011–2032, aug 2003.

[50] D. Aharonov, Z. Landau, and J. Makowsky, “The quantum fft can be
classically simulated,” arXiv preprint quant-ph/0611156, 2006.

[51] D. Gottesman, “The heisenberg representation of quantum computers,”
arXiv preprint quant-ph/9807006, 1998.

[52] I. L. Markov and Y. Shi, “Simulating quantum computation by contracting
tensor networks,” SIAM Journal on Computing, vol. 38, no. 3, pp. 963–
981, 2008.

[53] Y. Zhao, Y. Guo, Y. Yao, A. Dumi, D. M. Mulvey, S. Upadhyay, Y. Zhang,
K. D. Jordan, J. Yang, and X. Tang, “Q-gpu: A recipe of optimizations
for quantum circuit simulation using gpus,” in 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE,
2022, pp. 726–740.

[54] D. Lykov, R. Shaydulin, Y. Sun, Y. Alexeev, and M. Pistoia,
“Fast simulation of high-depth QAOA circuits,” in Proceedings of
the SC ’23 Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis, ser. SC-W
’23. Association for Computing Machinery, pp. 1443–1451. [Online].
Available: https://doi.org/10.1145/3624062.3624216

[55] D. Lykov, R. Schutski, A. Galda, V. Vinokur, and Y. Alexeev,
“Tensor network quantum simulator with step-dependent parallelization,”
in 2022 IEEE International Conference on Quantum Computing
and Engineering (QCE), pp. 582–593. [Online]. Available: https:
//ieeexplore.ieee.org/document/9951269

[56] D. B. Trieu, Large-scale simulations of error prone quantum computation
devices. Forschungszentrum Jülich, 2010, vol. 2.

[57] A. Li, O. Subasi, X. Yang, and S. Krishnamoorthy, “Density matrix
quantum circuit simulation via the bsp machine on modern gpu clusters,”
in Sc20: international conference for high performance computing,
networking, storage and analysis. IEEE, 2020, pp. 1–15.

https://arxiv.org/abs/2009.01845v2
https://doi.org/10.1145/3624062.3624216
https://ieeexplore.ieee.org/document/9951269
https://ieeexplore.ieee.org/document/9951269

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 A hierarchical partitioning approach to scaling per-
formant quantum circuit simulation based on staging
and kernelization.

C2 An ILP algorithm to stage a circuit for simulation
that can minimize the number of stages.

C3 A dynamic programming algorithm for kernelizing
each stage to ensure efficient parallelism.

C4 An implementation that realizes hierarchical parti-
tioning and significantly outperforms existing simu-
lators.

B. Computational Artifacts

A1 https://github.com/quantum-compiler/atlas-artifact
or https://doi.org/10.5281/zenodo.13334618

Artifact ID Contributions Related
Supported Paper Elements

A1 C1, C4 Figures 5-8
C2 Figure 9
C3 Figure 10

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The artifact includes the implementation of Atlas, bench-
mark circuits, instructions to compare with other quantum
circuit simulators, and the evaluation of the algorithms STAGE
and KERNELIZE.

Expected Results

STAGE should always outperform SnuQS’ approach.
KERNELIZE should achieve a lower cost on average than

greedily packing up to 5 qubits. The cost reduction should be
similar within each circuit family (the same circuit name with
different numbers of qubits).

In end-to-end performance without DRAM offloading, Atlas
should outperform HyQuas, cuQuantum, and Qiskit by more
than 2×; with DRAM offloading, Atlas should outperform
QDAO by two orders of magnitude. In all of these experi-
ments, Atlas should scale better than other quantum circuit
simulators.

Expected Reproduction Time (in Minutes)

The expected computational time of this artifact is 153
minutes on a single node of four NVIDIA A100-SXM4-40GB
GPUs plus 25 minutes on up to 16 such GPU nodes for
end-to-end performance with and without DRAM offloading
(excluding the waiting time to allocate the nodes), plus 27
hours on a single-core CPU for the evaluation of STAGE and

KERNELIZE. Additional experiments on up to 256 GPUs (64
GPU nodes) require an extra 25 minutes (excluding the waiting
time to allocate the nodes).

We expect around 60 minutes for the Artifact Setup and
around 30 minutes for the Artifact Analysis.

Artifact Setup (incl. Inputs)

Hardware: We use the Perlmutter supercomputer to evalu-
ate Atlas. We use up to 16 compute nodes. Each compute node
is equipped with an AMD EPYC 7763 64-core 128-thread
processor, 256 GB DRAM, and four NVIDIA A100-SXM4-
40GB GPUs. The nodes are connected with HPE Slingshot
200 Gb/s interconnects. For the evaluation of STAGE and
KERNELIZE, we use a single thread on an Intel Xeon W-1350
@ 3.30GHz CPU (other CPUs are also supported).

Software: Atlas (included in the artifact A1), HyQuas
(modified from https://github.com/thu-pacman/HyQuas/tree/
f976382512a74958ec7f76e74e02765e182dc8cb), cuQuantum
Appliance 23.03 (https://catalog.ngc.nvidia.com/orgs/nvidia/
containers/cuquantum-appliance), Qiskit 1.0.2 (https://pypi.
org/project/qiskit/), QDAO 0.1.0 (modified from https://github.
com/Zhaoyilunnn/qdao/tree/v0.1.0), and Quartz (https://github.
com/quantum-compiler/quartz/tree/atlas-artifact).

Datasets / Inputs: The benchmark circuits are generated
from MQT Bench (https://www.cda.cit.tum.de/mqtbench/) and
NWQBench (https://github.com/pnnl/nwqbench). We replace
the SWAP gates with logical qubit swaps because some previ-
ous work does not support SWAP gates, and this replacement
does not affect the result. We include the modified benchmark
circuits in the artifact along with detailed instructions for
replacing the SWAP gates.

Installation and Deployment: We require GCC 12.3.0, GCC
11.2.0, CUDA 12.2, CUDA 11.7, NCCL 2.19.4, NCCL 2.15.5,
CMake 3.18+, Conda 23.3+, Python 3.8, Python 3.9, and
Python 3.11. We tested only on Linux-like operating systems.

Artifact Execution

The main tasks T7, T8, T9, T10, T12, T13 collect performance
data for each quantum circuit simulator. They depend on T2

which copies the benchmark circuits for each task. The tasks
to plot the figures T4, T5, T11, T14 can also be run without
running the main tasks to plot the existing results included in
the artifact.
T1 Setup, Part 1: Create a Python environment for

Quartz and build Quartz.
T2 (T1 → T2) Setup, Part 2: Install the HiGHS solver

in Quartz.
T3 Setup, Part 3: Replace the account name in the

scripts.
T4 (T1, T2 → T4) Circuit Staging: Evaluate STAGE and

plot Figure 9.
T5 (T1, T2 → T5) Circuit Kernelization: Evaluate KER-

NELIZE and plot Figure 10.

https://github.com/quantum-compiler/atlas-artifact
https://doi.org/10.5281/zenodo.13334618
https://github.com/thu-pacman/HyQuas/tree/f976382512a74958ec7f76e74e02765e182dc8cb
https://github.com/thu-pacman/HyQuas/tree/f976382512a74958ec7f76e74e02765e182dc8cb
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuquantum-appliance
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuquantum-appliance
https://pypi.org/project/qiskit/
https://pypi.org/project/qiskit/
https://github.com/Zhaoyilunnn/qdao/tree/v0.1.0
https://github.com/Zhaoyilunnn/qdao/tree/v0.1.0
https://github.com/quantum-compiler/quartz/tree/atlas-artifact
https://github.com/quantum-compiler/quartz/tree/atlas-artifact
https://www.cda.cit.tum.de/mqtbench/
https://github.com/pnnl/nwqbench

T6 End-to-end experiments, Atlas, Part 1: Create a
Python environment for Atlas.

T7 (T2, T3, T6 → T7) End-to-end experiments, Atlas,
Part 2: Build and run Atlas without DRAM offload-
ing.

T8 (T2, T3 → T7) End-to-end experiments, HyQuas:
Build and run HyQuas.

T9 (T1, T2, T3 → T8) End-to-end experiments, cuQuan-
tum: Build and run cuQuantum.

T10 (T1, T2, T3 → T9) End-to-end experiments, Qiskit:
Build and run Qiskit.

T11 (T7, T8, T9, T10 → T11) End-to-end experiments:
Plot Figures 5-6.

T12 (T2, T6 → T12) DRAM Offloading, Atlas: Build and
run Atlas with DRAM offloading.

T13 (T2 → T13) DRAM Offloading, QDAO: Create a
Python environment for QDAO, and build and run
QDAO.

T14 (T12, T13 → T14) DRAM Offloading: Plot Figures
7-8.

We run all experiments with CUDA 12.2 except for HyQuas
where we use CUDA 11.7 because the cuTT library it uses
does not support CUDA 12.

For the experiments on QDAO where it improves the
performance by warming it up beforehand, we run the first
experiment on QDAO twice to warm it up and only record
the time of the second run. For all other experiments, we run
them for one time.

Artifact Analysis (incl. Outputs)

Executing the artifact produces plots that should be similar
to Figures 5-10 in the paper, as well as an additional plot with
42 qubits for circuit staging, additional individual circuit plots
for circuit kernelization, and additional logarithmic-scale plots
for end-to-end experiments. Please see the detailed aspects
to compare in the Artifact Analysis Section of the Artifact
Evaluation Appendix.

Artifact Evaluation (AE)
A. Computational Artifact A1

Artifact Setup (incl. Inputs)

We use the Perlmutter supercomputer to evaluate the per-
formance of Atlas, and use a single-core CPU to evaluate the
algorithms STAGE and KERNELIZE.

To run the artifact, please follow the instructions about
the prerequisites on https://github.com/quantum-compiler/
atlas-artifact. This needs to be done on both the single-core
CPU and Perlmutter. This corresponds to the tasks T1, T2, T3

in the Artifact Description.

Artifact Execution

Please refer to the instructions on the GitHub repos-
itory https://github.com/quantum-compiler/atlas-artifact. You
can find the instructions for each task in the corresponding
sections in the README.md file in the repository.

Artifact Analysis (incl. Outputs)

Circuit Staging. Task T4 plots Figure 9 and stores it
at staging_bench/ilp_plot_31.pdf. Both Atlas and
SnuQS should have exactly one stage at 31 local qubits.
Atlas should always outperform SnuQS from 15 to 30 local
qubits. The number of stages should be non-ascending from
15 to 31 for Atlas, but this generally does not hold for
SnuQS. This task also plots a figure for 42 total qubits at
staging_bench/ilp_plot_42.pdf which shows the
same pattern: both Atlas and SnuQS have exactly one stage at
42 local qubits, Atlas always outperform SnuQS from 18 to 41
local qubits. The number of stages should be non-ascending
from 18 to 42 for Atlas, but this does not hold for SnuQS.

Circuit Kernelization. Task T5 plots Figure 10 and stores
it at kernelization_bench/
dp_circuit_geomean_relative.pdf. It also
plots figures for individual circuits and stores them
at kernelization_bench/dp_plot_[circuit
name].pdf. The cost reduction should be similar within
each circuit family in each individual circuit plot. The
greedy baseline performs well in dj and qsvm circuits, but
KERNELIZE achieves a much lower cost on other circuits.
The relative geomean cost of KERNELIZE should be similar
to Figure 10 in the paper (0.583×).

End-to-end experiments. Task T11

plots Figure 5 and stores it at
perlmutter/e2e/logs/figures/[circuit
name]_perf.pdf. Atlas should scale the best on
each of the individual circuit families. On a single GPU,
Atlas should achieve similar or better performance than
cuQuantum and HyQuas. On 256 GPUs, Atlas should
be much better than both cuQuantum and HyQuas.
On average, Atlas should outperform HyQuas or
cuQuantum by more than 2×. The logarithmic versions
at perlmutter/e2e/logs/figures/[circuit
name]_perf_log.pdf should show that Atlas
outperforms Qiskit by orders of magnitude.

https://github.com/quantum-compiler/atlas-artifact
https://github.com/quantum-compiler/atlas-artifact
https://github.com/quantum-compiler/atlas-artifact

Task T11 also plots Figure 6 and stores it at
perlmutter/e2e/logs/figures-comm/
comm_mean.pdf. The percentage of communication time
should increase from 0% to around 65% when the number
of GPUs increases from 1 to 256. It may decrease when the
number of GPUs increases from 2 to 4 if all pairs of GPUs
are connected in the GPU node.

DRAM Offloading. Task T14 plots
Figures 7-8 and stores them at
perlmutter/offload/scalability-qdao.pdf and
perlmutter/offload/scalability-atlas.pdf.
Figure 7 should show that Atlas outperforms QDAO
by two orders of magnitude and also scales better.
Figure 8 should show that the simulation time of
Atlas decreases when the number of GPUs increases.
It shows that the simulation time of QDAO stays the
same when the number of GPUs increases by comparing
perlmutter/offload/logs/qdao-qiskit/
qdao_1_30_19.log (the content is the simulation time)
with perlmutter/offload/logs/qdao-qiskit/
qdao_2_30_19.log and perlmutter/offload/
logs/qdao-qiskit/qdao_4_30_19.log.

	Introduction
	Background
	Hierarchical Partitioning for Simulation
	Circuit Staging
	Circuit Kernelization
	Implementation
	Reducing Size of DP State in Kernelize
	Cost Function in Kernelize
	Atlas

	Evaluation
	Experimental Setup
	End-to-end Performance
	DRAM Offloading
	Circuit Staging
	Circuit Kernelization

	Related Work
	Limitation
	Conclusion
	References
	Overview of Contributions and Artifacts
	Paper's Main Contributions
	Computational Artifacts

	Artifact Identification
	Computational Artifact A1
	Computational Artifact A1

