
QuanTaichi: A Compiler for Quantized Simulations
(Supplemental Document)

YUANMING HU, Taichi Graphics & MIT CSAIL
JIAFENG LIU, State Key Laboratory of CAD&CG, Zhejiang University
XUANDA YANG, Zhejiang University
MINGKUAN XU, Taichi Graphics & Tsinghua University
YE KUANG, Taichi Graphics
WEIWEI XU, State Key Laboratory of CAD&CG, Zhejiang University
QIANG DAI, Kuaishou Technology
WILLIAM T. FREEMAN,MIT CSAIL
FRÉDO DURAND,MIT CSAIL

1 BIT STRUCT STORE FUSION EXAMPLE
Below is a simple kernel and its IR before and after bit struct store
fusion.
// Data layout
x = ti.field(dtype=ti.quant.int(16, True))
y = ti.field(dtype=ti.quant.int(16, True))
ti.root.dense(ti.i, 1024).bit_struct(num_bits=32).place(

x, y)

// Kernel
@ti.kernel
def store():

for i in range(1024):
x[i] = 1
y[i] = 2

// IR before bit struct store fusion
$0 = offloaded range_for(0, 1024) grid_dim=0 block_dim

=32
body {
<i32> $1 = loop $0 index 0
<i32> $2 = const [1]
<*gen> $3 = get root // the root SNode
<i32> $4 = const [0]
<*gen> $5 = [S0root][root]::lookup($3, $4) activate =

false
<*gen> $6 = get child [S0root−>S1dense] $5 // the

SNode corresponding to ti.root.dense(ti.i, 1024)
<i32> $7 = const [1023]
<i32> $8 = bit_and $1 $7 // from array addressing
<*gen> $9 = [S1dense][dense]::lookup($6, $8) activate

= false
<*bs(ci16@0, ci16@16)> $10 = get child [S1dense−>

S2bit_struct<bs(ci16@0, ci16@16)>] $9 // the
SNode corresponding to bit_struct(num_bits=32)
with index $1 (the loop index i)

<*gen> $11 = [S2bit_struct<bs(ci16@0, ci16@16)>][
bit_struct]::lookup($10, $4) activate = false

<^ci16> $12 = get child [S2bit_struct<bs(ci16@0,
ci16@16)>−>S3place<ci16><bit>] $11 // the SNode
corresponding to place(x)

$13 : global store [$12 <− $2] // x[i] = 1
<i32> $14 = const [2]

Authors’ addresses: Yuanming Hu, Taichi Graphics & MIT CSAIL, yuanming@
taichi.graphics; Jiafeng Liu, State Key Laboratory of CAD&CG, Zhejiang University,
jiafengliu@zju.edu.cn; Xuanda Yang, Zhejiang University, xuandayang@gmail.com;
Mingkuan Xu, Taichi Graphics & Tsinghua University, xmk17@mails.tsinghua.edu.cn;
Ye Kuang, Taichi Graphics, yekuang@taichi.graphics; Weiwei Xu, State Key Laboratory
of CAD&CG, Zhejiang University, xww@cad.zju.edu.cn; Qiang Dai, Kuaishou Technol-
ogy, daiqiang@kuaishou.com; William T. Freeman, MIT CSAIL, billf@mit.edu; Frédo
Durand, MIT CSAIL, fredo@mit.edu.

<^ci16> $15 = get child [S2bit_struct<bs(ci16@0,
ci16@16)>−>S4place<ci16><bit>] $11 // the SNode
corresponding to place(y)

$16 : global store [$15 <− $14] // y[i] = 2
}

// IR after bit struct store fusion
$0 = offloaded range_for(0, 1024) grid_dim=0 block_dim

=32
body {
<i32> $1 = loop $0 index 0
<i32> $2 = const [1]
<*gen> $3 = get root // the root SNode
<i32> $4 = const [0]
<*gen> $5 = [S0root][root]::lookup($3, $4) activate =

false
<*gen> $6 = get child [S0root−>S1dense] $5 // the

SNode corresponding to ti.root.dense(ti.i, 1024)
<i32> $7 = const [1023]
<i32> $8 = bit_and $1 $7 // from array addressing
<*gen> $9 = [S1dense][dense]::lookup($6, $8) activate

= false
<*bs(ci16@0, ci16@16)> $10 = get child [S1dense−>

S2bit_struct<bs(ci16@0, ci16@16)>] $9 // the
SNode corresponding to bit_struct(num_bits=32)
with index $1 (the loop index i)

<*gen> $11 = [S2bit_struct<bs(ci16@0, ci16@16)>][
bit_struct]::lookup($10, $4) activate = false

<i32> $12 = const [2]
$13 : bit_struct_store $11, ch_ids=[0, 1], values=[$2,

$12] // fused bit struct store from $13 and $16
in the IR above, i.e., "(x, y)[i] = 1, 2"

}

2 MICROBENCHMARKS
Bit struct store fusion. If we have two or more bit struct stores in

the same bit struct, we can fuse them together a masked store.
In store, we have two fields x, y of 16 bits each placed in a bit

struct, and we can fuse the two atomic stores into one atomic store.
@ti.kernel
def store():

for i in range(n):
x[i & 32767] = i & 1023
y[i & 32767] = i & 15

partial_store has four fields x, y, z, w of 8 bits each placed
in a bit struct, but only three of them are stored. Our store fusion
pass fuses the three stores together, and our atomic demotion pass
demotes the atomic store to a regular store.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:2 • Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, William T. Freeman, and Frédo Durand

@ti.kernel
def partial_store():

for i in range(n):
x[i] = i & 127
y[i] = i & 31
z[i] = i & 7
do not store w[i]

matmul is a simple program multiplying a 3 × 3 matrix with a
constant matrix. The performance boost mostly comes from atomic
demotion in this case.

@ti.kernel
def matmul():

for i in range(n):
F[i] = (ti.Matrix.identity(ti.f32, 3) +

0.1 * ti.Matrix.one(ti.f32, 3, 3)) @ F[i
]

Encoding/decoding overhead. saxpy is a standard Single-Precision
A·X Plus Y program. The computation in the kernel is minimized,
and we use this program to evaluate the decoding/encoding over-
head of custom floating-point numbers.

@ti.kernel
def saxpy(alpha: ti.f32):

for i in range(n):
y[i] = alpha * x[i] + y[i]

3 BIT ARRAY VECTORIZATION
In this section we provide more details on bit array vectorization, a
domain-specific optimization that allows our system to effectively
process vectorized operations on bit arrays of u1 types (“boolean”).
Consider the following example, where data are copied from a

2D 128 × 128 u1 array x to y:

x = ti.field(dtype=ti.quant.int(bits=1, signed=False)
y = ti.field(dtype=ti.quant.int(bits=1, signed=False)

cell = ti.root.dense(ti.ij, (128, 4))
cell.bit_array(ti.j, 32).place(x)
cell.bit_array(ti.j, 32).place(y)

@ti.kernel
def copy():

for i, j in x:
y[i, j] = x[i, j]

Although our system can easily improve storage efficiency, com-
putationally this bit-wise for loop is inefficient for two reasons.
Firstly, we have to use hardware-native 32-bit integer registers
for our simulated 1-bit values, which uses only 1/32 of the opera-
tion bitwidth. Secondly, when store the results bit-by-bit, the code
generator has to issue a large number of expensive atomicRMW
operations for thread-safety, since multiple CPU/GPU threads may
write to different bits within a single u32, leading to data races.

Bit-wise for loop vectorization. The situation above inspires us to
vectorize bit array load, store, and arithmetics, so that each iteration
processes a whole 32xu1 bit array instead of a single u1. This not only
utilizes the full bitwidth but also eliminates the need for atomicRMW.
Unlike traditional vectorized operations supported by modern pro-
cessors (such as SSE and AVX), bit-level vectorization has limited

hardware instructions. Basically, the only “bit-vectorized" opera-
tions offered natively by hardware are bit-wise and (&), or (|), and
xor (^).

At this point, the compiler can efficiently handle simple element-
wise load/store operations, plus some Boolean arithmetics. We fur-
ther conduct two optimizations that improve code generation quality
and capability.

Bit-vectorized loads with offsets. In simulations it is often useful
to load data from neighborhoods, such as x[i+1, j] and x[i, j+1].
Assuming bits are vectorized along the j axis, a vectorized load
of x[i+1, j] is perfectly aligned with the bit arrays, but that of
x[i, j+1] is not.

Actually, in most cases, data to fetch in a vectorized loop iteration
do not perfectly align with the underlying bit arrays. Luckily, if
we know the offset at compile-time, which is most likely true for
stencils, we can still leveragemost of the bit vectorization benefits by
loading two adjacent bit array entries and use cheap bit operations
to synthesize the load result, as shown in Fig. 1.

Fig. 1. Bit-vectorized loads with offsets. In this simplified example, we store
the bit array using uint8 and each node represents an element in the bit
array. To load x[i, j+1] (red box), we first need two vectorized loads
(green and blue nodes). Then we use bit shifting operations to extract the
target bits and move them to corresponding locations. Finally, we merge
them using a bit “or” operation.

After this optimization, the following code snippet can be effi-
ciently compiled:

@ti.kernel
def copy_with_offset():

ti.bit_vectorize(32)
for i, j in x:

y[i, j] = x[i, j + 1]

Bit-vectorized integers and adders. Even when operating on binary
inputs and outputs, intermediate values may have large value ranges.
To represent these intermediate values efficiently, for example, we
store a 𝑛-bit 32-wide vectorized integer using 𝑛 u32 integer buffers,
where the 𝑖-th buffer stores the 𝑖-th bit of all the integer values being
vectorized. These “bit-vectorized” integers allow us to treat each bit
of the 𝑛-bit integer in a vectorized manner, independent of other
bits on the 𝑛-bit integer.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

QuanTaichi: A Compiler for Quantized Simulations
(Supplemental Document) • 1:3

Adding two bit-vectorized integers can be implemented using
cheap bit operations, just like implementing a “full adder” using logic
gates. Besides adding, we also implemented comparison operations
between bit-vectorized integers using bit-wise operators.

In the following example, since variable count as range [0, 4), we
use a 2-bit vectorized integer to store its value.
@ti.kernel
def count_neighbors():

ti.bit_vectorize(32)
for i, j in x:

count = 0
count += x[i, j + 1]
count += x[i, j − 1]
count += x[i + 1, j]
y[i, j] = count == 3

4 HIGH RESOLUTION GAME OF LIFE

Fig. 2. High resolution Game of Life. Note the colors are inverted for better
visibility. Best viewed on a high-resolution screen.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:4 • Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, William T. Freeman, and Frédo Durand

5 THE EFFECTIVENESS OF SHARED EXPONENTS.
A visual quantization scheme comparison is shown in Fig. 3. As
mentioned in our paper, there is an exponential decay of density
in the simulation, and ultimately all pixels should decay into the
white background color. When compared to the float32 version,
some quantization schemes lead to unpleasant gray color blocks that
never decay. For example, in the fixed-point simulation, the smoke
stopped decaying after a few seconds, leaving gray regions that
never decays. This is because the precision is too low to distinguish
small changes. The non-shared one looks better but still suffers from
the lack of precision. The shared exponent version, however, has
sufficient fraction bits and looks much closer to the float32 version
compared to two other methods.

Fig. 3. Shared exponent effectiveness comparison. We compare shared ex-
ponent, non-shared exponent, and fixed-point for a 2D smoke simulation.
Notice shared exponent float looks clearer while non-shared exponent float
suffer from some unpleasant grays due to fewer fraction bits. The fixed-point
version is also subject to the same problem caused by low precision and
dynamic range. Note that fluids are highly turbulent so the dye patterns
are different from time to time, even when using float32.

6 VISUAL COMPARISON CASES AND QUANTIZATION
SCHEMES

Visual comparison cases (Fig. 4) are presented in the supplemental
video. Here we provide more details on the quantization scheme of
each case.

Case 1 and 2. We use fixed23 for position, ti.quant.float(exp
=6, frac=13) for velocity (shared exponent). We use fixed16 for
entries in the deformation gradient matrix.

Fig. 4. Five visual comparison cases used to qualitatively compare quantized
and full-precision simulators.

Case 3. This is an MLS-MPM simulation. We use the same quan-
tization scheme as the 235M-particle simulation, and use a fixed23
to track the fluid volume.

Case 4. In this 2D smoke simulation, we use fixed21 for velocity
and shared exponent with 5 bits for exponent and 9 bits for fraction
to quantize dye density.

Case 5. We use the same quantization scheme as the 421M-voxel
smoke simulation.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

	1 Bit Struct Store Fusion Example
	2 Microbenchmarks
	3 Bit array vectorization
	4 High resolution game of life
	5 The effectiveness of shared exponents.
	6 Visual comparison cases and quantization schemes

