
AsyncTaichi: Whole-Program Optimizations for Megakernel Sparse
Computation and Differentiable Programming

YUANMING HU∗,MIT CSAIL
MINGKUAN XU∗, Tsinghua University
YE KUANG, Tsinghua University
FRÉDO DURAND,MIT CSAIL

Fig. 1. Top: In the original Taichi system [Hu et al. 2019], computational kernels are eagerly compiled and launched. Therefore there is no chance for the
optimizer to optimize beyond a single kernel. Bottom: In our work, we accumulate kernels in a execution buffer, only flushing the execution queue when
necessary. This allows the optimizer to gain more context and conduct optimization beyond a single kernel. We dynamically build a dependency graph
(“state-flow graph") of kernels, so that sparse computation kernels can be optimized at a whole-program level. After a suite of domain-specific optimization
passes including list generation removal, sparse data structure activation elimination, the tasks are much better optimized compared to those in the original
Taichi system. As a result, the whole-program optimized Taichi programs run much faster on parallel devices.

We present a whole-program optimization framework for the Taichi pro-
gramming language. As an imperative language tailored for sparse and dif-
ferentiable computation, Taichi’s unique computational patterns lead to
attractive optimization opportunities that do not present in other compiler
or runtime systems. For example, to support iteration over sparse voxel
grids, excessive list generation tasks are often inserted. By analyzing sparse
computation programs at a higher level, our optimizer is able to remove the

∗Both authors contributed equally to this work.

Authors’ addresses: Yuanming Hu, MIT CSAIL, yuanming@mit.edu; Mingkuan Xu,
Tsinghua University, xmk17@mails.tsinghua.edu.cn; Ye Kuang, Tsinghua University,
ykuang.me@gmail.com; Frédo Durand, MIT CSAIL, fredo@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/12-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

majority of unnecessary list generation tasks. To provide maximum program-
ming flexibility, our optimization system conducts on-the-fly optimization of
the whole computational graph consisting of Taichi kernels. The optimized
Taichi kernels are then just-in-time compiled in parallel, and dispatched to
parallel devices such as multithreaded CPU and massively parallel GPUs.
Without any code modification on Taichi programs, our new system leads
to 3.07 − 3.90× fewer kernel launches and 1.73 − 2.76× speed up on our
benchmarks including sparse-grid physical simulation and differentiable
programming.

CCS Concepts: • Software and its engineering → Domain specific lan-
guages; • Computing methodologies → Parallel programming lan-
guages; Physical simulation.

Additional Key Words and Phrases: Sparse Data Structures, GPU Computing.

ACM Reference Format:
Yuanming Hu, Mingkuan Xu, Ye Kuang, and Frédo Durand. 2020. Async-
Taichi: Whole-Program Optimizations for Megakernel Sparse Computa-
tion and Differentiable Programming. 1, 1 (December 2020), 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: December 2020.

ar
X

iv
:2

01
2.

08
14

1v
1

 [
cs

.P
L

]
 1

5
D

ec
 2

02
0

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 •

1 INTRODUCTION
Taichi is a new programming language for spatially sparse [Hu et al.
2019] and differentiable programming [Hu et al. 2020]. It has shown
its productivity and performance, in forward physical simulation,
and deep learning tasks with differentiable physical modules. How-
ever, existing Taichi compilers optimizations are restricted within
kernels, without high-level views of the whole program. This mo-
tivates a new system that can conduct whole-program automatic
performance optimizations for Taichi programs.

Whole-program optimization, also known as “link-time optimiza-
tion” or “interprocedural optimization” in some literature, is not
a new idea. For example, in traditional ahead-of-time compilers
such as gcc, whole program optimizations can be easily achieved us-
ing the -flto flag. In more dynamic array programming languages
such as JAX/HLO [Bradbury et al. 2018], array-level fusion [Frostig
et al. 2018] has been an effective optimization. However, three ma-
jor challenges do exist when applying the idea of whole-program
optimization to Taichi.

Firstly, Taichi eagerly launches computational tasks. The existing
Taichi system just-in-time (JIT) compiles and then launches every
kernel immediately after it is called. This eager execution scheme
destroys opportunities to analyze and optimize beyond a single
kernel.

Secondly, Taichi is imperative, has mutable data buffers and needs
to support spatially sparse programming. Unlike systems that rely
on dense, immutable, and holistic arrays (“tensors” in systems like
TensorFlow), partial updates and mutable, sparse buffers can lead
to difficulties when analyzing a Taichi program.
Thirdly, the spatially sparse programming feature of Taichi can

lead to further complexities to the analysis and optimization process.
While tools for analyzing dense array programs are well established,
their counterparts in sparse array computations are largely under-
exploited.
In this work, we propose a state-flow formulation of Taichi pro-

grams for analyzing Taichi programs, a new asynchronous execution
engine for Taichi that opens up spaces for performance optimization,
and most importantly, a whole-program optimizer for imperative
spatially sparse and differentiable computation.

In contrast to previous Taichi system that does no whole program
optimization, in this work we build a dynamic graph consisting of
pending kernels, then compile and run them lazily. This enables
us to perform cross-kernel optimizations ranging from common
optimizations such as kernel fusion to sparse-computation-specific
activation/list generation removal. We can also perform parallel com-
pilation, which significantly reduces compilation time.

With productivity and performance in mind, our system is prac-
tically designed following the design guidelines below:
• Transparent to users. No code modification is needed for users
to leverage the new execution and optimization system.

• Compile Just-in-time. The just-in-time compilation system in
Taichi has proven to bring users great flexibility and performance,
since JIT delays the need of value of “compile-time constant“
values. For example, Δ𝑡 in physical simulators is often run-time
variable in ahead-of-time compilation, but with JIT Δ𝑡 would be

a compile-time constant, which allows the compiler to do more
optimizations such as constant folding.

• Problems of all scales matter. Graphics applications cover a
wide range of problem sizes. For example, a particle simulation
may cover from 2, 000 to 100, 000, 000 particles. For small-scale
tasks, compilation time may be the bottleneck; for large scale
tasks, computation time is more important.
The rest of this paper covers our detailed design decisions moti-

vated by the design guidelines. We summarize our contributions as
follows:

(1) A state-flow formulation of spatially sparse computation. The
resulted state-flow graph (SFG) serves as a high-level interme-
diate representation (IR) of a Taichi program that captures
essential information to analyze sparse computation.

(2) An asynchronous task execution scheme for the Taichi pro-
gramming language that enables parallel compilation and
exposes whole-program optimization opportunities;

(3) Most importantly, a whole-program optimizer for asynchro-
nous spatially sparse and differentiable computation, leverag-
ing the state-flow graph for performance optimizations;

(4) A systematic study of the resulted asynchronous Taichi sys-
tem. Based on the benchmarks, we show 1.73−2.76× (geomet-
ric mean) execution time improvements over the traditional
synchronous Taichi system without whole-program optimiza-
tions [Hu et al. 2019].

2 RELATED WORK
Sparse data structures. Taichi directly draws inspirations from

popular sparse data structures in computer graphics, including
VDB [Hoetzlein 2016; Museth et al. 2013; Wu et al. 2018] and SP-
Grid [Gao et al. 2018; Setaluri et al. 2014].While these data structures
have demonstrated effective computation and storage benefits over
dense arrays, writing programs that leverage them is not an easy
task. Taichi provides a language abstraction that allows using these
data structures as if they are dense, and runtime systems that auto-
matically handle parallel voxel iteration and memory management.
These designs benefit the end users, but may end up with more com-
putation that would need a whole-program analysis to optimize.
Another thread of work on sparse computation is sparse linear

algebra languages, such as TACO [Chou et al. 2018; Kjolstad et al.
2017], which can effectively generate kernels for Einstein summa-
tions on sparse matrices and tensors. Instead of explicitly building
the sparse matrices, Taichi encourages matrix-free linear algebra
computations, which are often the more effective way for high-
performance linear algebra solves for physical simulation (see, for
example [Liu et al. 2018]).

Array data-flow analysis. The static-single assignment (SSA) form
has been a very popular IR structure. SSA forms are designed for
scalar variables, and it cannot directly represent array states, where
partial updates may happen. Array SSA forms have been proposed
and successfully adopted in parallelization [Knobe and Sarkar 1998]
and array privatization [Maydan et al. 1993]. However, related work
in this topic is mostly focused on dense arrays. Our high-level IR sys-
tem represents not only array partial updates, but also the topology
changes in sparse arrays.

, Vol. 1, No. 1, Article . Publication date: December 2020.

AsyncTaichi: Whole-Program Optimizations for Megakernel Sparse Computation and Differentiable Programming • 3

Whole-Program Optimization (WPO). WPO is also known as Inter-
procedural optimization (IPO). For ahead-of-time compilation, IPO
typically happens at link time, so sometimes it is also called link-
time optimization (LTO). Many existing compilers, such as gcc,
MSVC and clang, already support LTO. While WPO is extensively
explored in classical compiling systems, it is still underexploited for
spatially sparse computation. The unique computational pattern in
Taichi brings higher complexity and the need for a unified high-level
intermediate representation for analysis and optimization.

Compute graph optimization in deep learning frameworks. A feed-
forward deep neural (DNN) network can be naturally represented
as directed acyclic graphs (DAG). This leads to a straightforward
mapping between DNNs and the compute graph: immutable, dense
feature maps directly map to compute graph edges, and operators
(such as convolutions, max pooling, and element-wise add) maps
to compute graph nodes. High-level optimizations on the compute
graph have been a popular feature in deep learning frameworks.
The HLO IR of XLA and PyTorch GLOW [Rotem et al. 2018] are
representative examples. Based on the compute graph, traditional
computer optimizations such as operator fusion, dead code elim-
ination (DCE), common subexpression elimination (CSE) can be
applied. We refer the readers to [Li et al. 2020] for a good survey.
Our system is similar to these systems in that a high-level graph-
based IR is used, yet the high-level IR for Taichi must consider its
sparse, imperative, and megakernel nature.

3 TAICHI BACKGROUND: IMPERATIVE, MEGAKERNEL,
SPARSE, AND DIFFERENTIABLE PROGRAMMING

Taichi [Hu et al. 2019] is a new programming language for spa-
tially sparse and differentiable visual computing. As a domain-
specific language embedded in Python, Taichi’s just-in-time com-
piler transforms compute-intense kernels (Megakernels, similar to
a __global__ GPU kernel in CUDA) into parallel executables. Users
can flexibly launch the kernels using Python. Key features of Taichi
are described below.

Data-oriented programming. field is the key concept in Taichi
that represents data. A field can not only represent one- to eight-
dimensional dense tensors, but also their sparse variants. Taichi
also allows programmers to change data layouts using a data lay-
out description language, which can easily describe common data
layouts such as array-of-structures (AOS) or structures-of-arrays
(SOA). Taichi decouples algorithms from data structures. This allows
the users to exploit the vast design space of data structures and
layouts, so that maximum memory performance (e.g., cache hit-rate
and cacheline utilization) can be achieved via rapid trial-and-error.

Sparse programming. is a unique feature [Hu et al. 2019] of Taichi.
Most 3D graphics data (especially those stored on voxel grids) are
spatially sparse. Taichi has first-class support for sparse data struc-
tures. In order to make sparse data structures as easy to use as dense
data structures, various designs are made on the syntax, compiler,
and runtime levels:
• Sparse struct-for loops allow users to easily iterate over active
voxels of sparse data structures. For example, the following code
loops over a 3D sparse field:

for i, j, k in x:
x[i, j, k] += 1

List generation is the key mechanism to achieve efficient sparse
for-loops (Fig. 2).

Fig. 2. The structure of ti.root.pointer(ti.i, 4).dense(ti.i, 2).
place(x) in Taichi, a two-level 1D sparse data structure with the upper level
being a pointer array and the lower level being dense blocks. Highlighted
cells are active. Lists of each layer are defined to be a collection of active
node indices.

• Activation on write ensures sparse data structure nodes are im-
plicitly activated on writing. For example, the following code
generates a 2 × 2 × 2 downsampled sparse field y from a higher-
resolution sparse field x:

for i, j, k in x:
y[i // 2, j // 2, k // 2] += x[i, j, k]

Note that corresponding voxels of y does not have to be explicit
activated before this for loop. Taichi will automatically activate
y[i // 2, j // 2, k // 2] and zero-fill the initial data. See Fig-
ure 3 for an example.

Fig. 3. Execution result of simple program for i in x: y[i // 2] +=
1. y[1] and y[3] are activated on write. Because of the constraints of the
dense node, y[0] and y[2] are also activated.

• Automatic memory management frees the user from worrying
aboutmemory allocation and deallocation. Taichi’s high-performance
memory allocator will automatically manage sparse data structure
nodes.

• Programmable megakernels allows users to easily write parallel
programswith very high flexibility and rich expressiveness. Taichi
kernels allow complex control flows - in fact, users can easily write
a recursive ray tracer (See, e.g., [Hu et al. 2019]).

• Automatic parallelization Taichi kernels are decomposed into tasks
that are serial or parallel.

, Vol. 1, No. 1, Article . Publication date: December 2020.

4 •

Differentiable Programming in Taichi. Unlike some other differ-
entiable programming systems for deep learning such as Tensor-
Flow and PyTorch that operate on functional (“immutable”) buffers,
Taichi is imperative (providing “if” statements, serial and parallel
“for” loops). The imperative nature makes it easier to port most
physical simulation code written in popular languages like C++, to
the Taichi programming than to other modern functional program-
ming languages such as TensorFlow. Taichi uses a novel two-scale
reverse-mode automatic differentiation [Hu et al. 2020]: a light-weight
gradient tape stores kernel launches for end-to-end simulation differ-
entiation, and source-code transform is used for for differentiating
within kernels. This design ensures that the gradient versions of the
megakernels are still megakernels, and naturally uses global fields
as checkpoints for gradient computation.

Observations. Many potential performance optimizations in Taichi
programs need a whole-program view, which motivates the remain-
ing of this work. For example, sparse struct-for loops may easily
incur redundant list generation in the data structure tree. Elimi-
nating these unnecessary list generations needs a whole-program
understanding of the program.

4 A STATE-FLOW FORMULATION OF SPARSE
COMPUTATION

In imperative programming, Program = State + Compute. Specifically
in Taichi, because of the existence of sparse programming support,
“state” means way more than values of fields, and “compute” means
more than GPU kernels that operates on data. This creates more
challenges on modelling and analyzing Taichi programs, compared
to traditional imperative programming languages (such as C++) and
array-based systems such as TensorFlow.
In TensorFlow, every operation creates a new, immutable buffer

(“tensor”). In simulation, we have to go imperative, not only because
graphics programmers have been accustomed to using imperative
programming for decades, but also because in-place operations in
imperative programming offer significant performance advantages
in graphics applications, such as physical simulation.
We reformulate the imperative computation scheme of Taichi

into a collection of states and tasks. The ultimate goal of our IR
design is to strengthen and simplify optimization rules for spatially
sparse computation. To systematically optimize spatially sparse
computation, we formulate an AsyncTaichi program as a state-flow
graph (SFG), which is a DAG with nodes being tasks and edges
being states. This results in a state flow formulation and a high-level
intermediate representation (IR). Scalar data-flow analysis is well
studied in optimizing compilers, and SFGs can be considered as an
extended version of data-flow analysis to handle spatially sparse
computation.

Background: Structural Nodes (SNodes). In Taichi, specifying a
data structure includes choices at both the macro level, dictating
how the data structure components nest with each other and the
way they represent sparsity, and the micro level, dictating how data
are grouped together (e.g. structure of arrays vs. array of structures).
Taichi provides Structural Nodes (SNodes) to compose the hierarchy

and particular properties. Commonly used SNodes include dense,
bitmasked, pointer, dynamic.

4.1 States
States split the holistic description of a Taichi program into a suitable
granularity for analysis and optimization. dense is the only SNode
that has no sparsity information. Other SNodes can be spatially
sparse, so we must decompose the holistic descriptions of their data
into the following states:
• A value state simply represents the collection of numerical value
stored in field. Note that in data structure trees of Taichi, only
the leaf nodes (i.e., place SNodes) store numerical values. Value
states are the most basic states and have the same meaning as
those in data flow optimization. It is worth noting that in sparse
data structures every voxel has a numerical value, even if the
voxel is sparse - in that case the inactive voxel has value 0.

• A mask state cannot be treated as plain data flow since we need
to understand it and do domain-specific optimization. Masks are
scattered in various forms in the data structure. They are either
indicated by a bit in a bitmask SNode, or a non-null pointer for
the pointer SNode. Essentially mask is not a unified concept for
different data structures. Therefore we need to generate a unified
element list for struct-fors on different structures.

• A list state of a SNode represents the data structure nodes main-
tained by the runtime system. Recall that Taichi needs to gener-
ate/consume data structure node lists for load-balancing parallel
iterations over sparse data structure nodes. See [Hu et al. 2019]
for more details.

• An allocator state represents the state of Taichi’s memory allocator.
For computation that allocates/deallocates sparse data structure
nodes, the allocator states are changed.
The relationship between value, mask, and list state is depicted

in 4.

Taichi tasks. Each Taichi task has input edges (input states), out-
put edges (modified states). It also maintains its own metadata, such
as loop ranges (range/struct-fors). These edges and metadata will
be used for whole-program optimization.
For each state, we use a latest state tracker to track which task

holds the latest version of this state.

4.2 State-flow chains
Now let’s focus on a single state. For simplicity, let’s use value state
𝑆 (Fig. 5), which is operated on by kernels 𝑓 , 𝑔, 𝑝, ℎ, 𝑞. Note that 𝑓 , ℎ
and 𝑞 read and write the value state 𝑆 , yet 𝑔 and 𝑝 only reads the
value of 𝑆 . Every time we modify a state, a new “copy”1 is created.
Clearly, only the latest writer holds the latest version of a state,
while readers only fetches a copy without creating a new copy. If
we only consider the writers, we basically get a chain structure for
each state, with a few branches for readers, see the example in Fig. 5
as an concrete example.

Therefore, for a single state we can easily build a chain (a directed
acyclic graph, DAG), which we call “state-flow chain” (SFC).

1Note that in imperative programming the modifications are actually applied in place,
yet for optimization purposes we assume that we always create a new virtual copy.

, Vol. 1, No. 1, Article . Publication date: December 2020.

AsyncTaichi: Whole-Program Optimizations for Megakernel Sparse Computation and Differentiable Programming • 5

Fig. 4. State decomposition of a two-level sparse array, containing a sparse
intermediate layer and a dense leaf layer. Note that the value state covers
all pixels, even if the pixel is inactive. In other words, whenever an access
reads a pixel from the sparse array, the mask state will first be queried. If
the mask state says the pixel is inactive, 0 will be returned. Otherwise the
system queries the value state and returns the corresponding value. Here
we omit allocator states for simplicity.

Fig. 5. A state-flow chain of value state 𝑆 . The edges in the state-flow chain
depicts the kernel dependency relationships. Note that each state-flow
chain always has a main branch (write-after-write) and a reader branch
(read-after-write & write-after-read). In the main branch, each node (task)
creates a new version of the state.

4.3 State-flow graphs
A Taichi program can easily have hundreds of states. Here we in-
troduce state-flow graphs (SFG), which are essentially state-flow
chains sticking to together (Fig. 6). SFGs completely describes the
relationship between tasks in Taichi. Since unions of DAGs are still
DAGs, SFGs are DAGs too.

The SFG serves as the IR for whole-program sparse computation
optimization. The allows us to use well-established graph theory
languages for optimization (e.g., fusion as shown later).

Fig. 6. A state-flow graph, by definition, is a union of state-flow chains of
all the states used in a program.

Whenever a task is inserted into the execution queue, we dynami-
cally create a SFG node and create corresponding dependency edges.
SFG has two useful properties:

(1) Order independency. Any topologically ordered task se-
quence leads to the same program behavior

(2) Reconstruction invariance, corollary of “order indepen-
dency”. Any topologically ordered task sequence of G con-
structs the same graph G.

“Reconstruction invariance” is particularly useful when manip-
ulating the graph nodes: for example, to remove a node from SFG,
simply topologically sort the SFG nodes, remove the node from the
sorted list, and rebuild the SFG. This frees us from worrying about
how to correctly handle edges that are connected to the removed
node.

5 MAKING TAICHI ASYNCHRONOUS
The existing Taichi system (JIT) compiles and then launches every
kernel eagerly. This simple strategy actually prevents cross-kernel
optimization from happening, since the system only sees one kernel
at a time. Therefore, in order to make the SFG practically useful, we
need to hold the SFG nodes from executing before optimizations
are done.
This motivates us to develop an asynchronous execution engine

for Taichi. By making Taichi asynchronous, we can obtain a list
of kernels to compile and run lazily, and we can perform parallel
compilation, which reduces compilation time. More importantly,
we can perform kernel fusion, which reduces memory bandwidth
consumption and has a direct contribution to performance.

By-product: parallel compilation. As Taichi becomes more widely
adopted, the compiler needs to deal with programs with increasing
instructions and optimization passes. It it not uncommon that com-
pilation can sometimes take more than 70% of program end-to-end
run time. In the previous eager execution scheme, a serial thread
is used to compile and launch these kernels. In contrast, since the
asynchronous execution engine sees multiple kernels at a time, par-
allel compilation can be done easily, which can significantly reduce
wall-clock time wasted on compilation.

6 OPTIMIZE BEYOND KERNELS
With the state-flow graph IR that describes the whole programs, and
the asynchronous execution engine that saves the tasks from being

, Vol. 1, No. 1, Article . Publication date: December 2020.

6 •

(a) Generated tasks from two kernels and the corresponding SFG. x is a sparse data structure.

[node: initial_state:0]

[node: inc_c4_0_serial:1]

S1pointer_list

[node: inc_c4_0_listgen:2]

S0root_list S1pointer_mask

[node: inc_c4_0_struct_for:3]

S2place<i32>_valueS1pointer_list

S1pointer_list

[node: inc2_c6_0_struct_for:6]

S1pointer_list

S2place<i32>_value

(b) The SFG after eliminating list generation.

[node: initial_state:0]

[node: inc_c4_0_serial:1]

S1pointer_list

[node: inc_c4_0_listgen:2]

S0root_list S1pointer_mask

[node: inc_c4_0_struct_for:3]

S2place<i32>_valueS1pointer_list

S1pointer_list

(c) The SFG after task fusion.

Fig. 7. State-flow graph optimizations. (a) demonstrates the correspondence between Taichi kernels.

executed too early, we can finally conduct analyses and optimiza-
tions on the state-flow graph. In this section we discuss potential
whole-program optimizations on spatially sparse computation pro-
grams.

6.1 A minimal example
Here we show a trivial optimization example of two Taichi kernels.
Note that in Taichi, the “struct-for” construct allows users to iter-
ate over sparse tensors, which needs generating a list of elements
before the real computation happens. The list generation itself has
performance overhead which can often be optimized.

Fig. 8. The generated tasks of 2 kernels without kernel fusion. x is a sparse
data structure.

As shown in Figure 8, since x is a sparse data structure, Taichi
needs to generate an active list of x to know which elements of
x need to be looped over. So there are 3 tasks per such a small
kernel in synchronous mode. If the kernel on the right succeeds the
kernel on the left of Figure 8, and Taichi performs asynchronous
computing, we can fuse the 2 kernels into 1 kernel, perform some

analysis to know that the sparsity (i.e., which elements are active) is
not changed, and finally get Figure 9 after optimizations. In this case,

Fig. 9. The generated tasks of 2 kernels with kernel fusion.

we reduce the number of generated tasks from 6 to 3. Kernel fusion
is not new, but fusing kernels that operates on sparse data strictures is
a unique challenge in Taichi, since the iteration over active elements
implicitly depends on the mask of the sparse data structures.
Even if the bodies of both kernels cannot be directly optimized

like this example, we can still remove some list generation tasks
and reduce running time. This can be a significant improvement for
small kernels where the list generation time is comparable to the
real computation time.
Taichi’s sparse computation model motivates us to apply the

following domain-specific compiler optimizations:
• List generation removal
• Activation demotion
• Task fusion
• Dead store elimination

The remainder of this section details these optimizations.

, Vol. 1, No. 1, Article . Publication date: December 2020.

AsyncTaichi: Whole-Program Optimizations for Megakernel Sparse Computation and Differentiable Programming • 7

6.2 List generation removal
This is the easiest whole program optimization, yet it leads to sig-
nificantly higher performance for sparse computations in certain
cases. A list generation task takes as input a mask and outputs a list.
Two list generation tasks with the same parent list and the same
mask as the input outputs the same list, and we can eliminate one
of them.
List generation removal not only saves unnecessary execution

time on generating the sparse element lists, but also opens up op-
portunities for other optimizations. For example, if two struct-for
tasks are using the same list after list generation removal, a task
fusion may be able to fuse the tasks.

6.3 Activation demotion
Recall that Taichi has an activation-on-write mechanism. However,
it is often the case that the sparse element was already activated
before the task execution, so the element activation was checked
by not re-activated. This extra activation checking not only creates
diverging instruction flow on CPU/GPUs that harms performance,
but also creates a modification to the corresponding mask state,
creating obstacles for list generation removal. Therefore, we should
try to demote activating accesses to non-activating accesses.

Fortunately, many activations can be demoted, by analyzing the
task contexts. If two struct-for tasks are identical, the loop lists are
the same, and the activation statement in the second task depends
only on the loop indices, then the activation in the second task can
be removed.
This is remarkably effective for repeated access patterns such

as [𝑖//2]. For example, in the restriction (downsample) operator
of multigrid solvers, it is common to have the following pattern
(Fig. 10):
for i, j in x:

y[i // 2, j // 2] += x[i, j] * 0.25

Fig. 10. The activation pattern of for i, j in x: y[i // 2, j // 2]
+= x[i, j] * 0.25. x is the grid on the left, and y is the grid on the

right.

Our activation elimination optimizer can successfully infer that
if the mask of 𝑥 has not been changed, then the mask of 𝑦 will not
change either. This avoid false-positives mask state modifications,
and can further bring down the list generation kernel tasks by 6.7×
in the MGPCG example.

6.4 Task fusion
Clearly, we need to know the data dependency before we fuse
(G2P2G, stencil etc, multigrid, multi-channel advection (improved

cacheline utilization)) If all tasks are serial: Tasks A and B can be
fused if and only if there is no path of length ≥ 2 between A and
B. For parallel tasks, fuse only when the loop ranges are the same.
If there is an edge A → B in the SFG, we need every accesses on
that SNode are at the same address, and that address is unique per
iteration of the loop.

To find all fusible pairs of tasks, we compute the transitive closure
of the SFG using bitsets. For pairs of tasks without edges, we group
tasks by the tasks’ type, loop range (if the type is range for), or the
SNode (if the type is struct for). For each group, we use the transitive
closure to find which pairs of tasks do not have any path to each
other quickly. For each edge A → B in the SFG, we check if there is
a task C such that A has a path to C and C has a path to B using the
transitive closure, and apply the above check to find if A and B are
fusible.
This is very effective because we have many intraprocedural

optimizations, but it might be time-consuming when there are too
many tasks.

6.5 Dead store elimination
We can also perform some cross-kernel analysis with asynchronous
computing. For example, ti.clear_all_gradients() may exces-
sively zero-fill unrelated tensors, which can be eliminated with
data-flow analysis.

For convenience a user may frequently zero-fill fields in Taichi to
ensure data are correctly re-initialized. This is a typical source of
dead stores. For cases like this that a field is completely overwritten,
our optimizer can eliminate the previous dead stores.

7 IMPLEMENTATION DETAILS
The whole-program optimizations are relatively simple to imple-
ment, but extra attention was paid to the infrastructure to support
these optimizations. In this section, we briefly cover implementation
details that we empirically find to have direct impacts to perfor-
mance.

7.1 Asynchronous Execution Engine
We implement an asynchronous execution engine that performs
parallel compilation and kernel fusion.

We store all tasks into a queue until synchronization, which may
happen when there is anything we need to output or the Python
program embedding Taichi comes to an end. When synchroniza-
tion happens, we check each task that which tensors’ sparsity are
changed, and remove list generation tasks when there is a previous
one for the same tensor and there is no task between them changing
the sparsity of the tensor.
After removing redundant list generation tasks, we check each

adjacent tasks to see if they can be fused. For now, we only fuse
tasks that loop over the active elements of the same tensor, or tasks
that are simple parallel loops with the same range.

7.2 IR handle and IR bank for caching compilation
Since a kernel can be launched many times with the same IR, we
store all IRs into an IR bank to avoid repeated passes on the IR
and improve asynchronous compilation performance. We use IR

, Vol. 1, No. 1, Article . Publication date: December 2020.

8 •

handles to access IRs in the bank. An IR handle consists of a pointer
to the IR and the hash of the IR. We assign an IR handle to each
task, and whenever we are going to do any modification to the
IR, we check if we have already done it in the IR bank, where we
cache the result of IR optimization passes such as fusion, activation
elimination, and dead store elimination. If the result is not cached,
we copy the IR on write to avoid corrupting the IR in the bank,
do the modification, store the modified IR into the bank, and then
cache the mapping from the IR handle before modification to the IR
handle after modification into the bank. We also cache some data
that do not need to modify the IR into the bank, such as the task
meta of the IR.

7.3 Intra-kernel data-flow optimizations
To achieve better performance after kernel fusion, we need an op-
timization pass on the task after fusion. As Taichi Intermediate
Representation (IR) is relatively hierarchical, we build a data-flow
graph for data-flow analysis, to perform optimizations across the
whole kernel including store-to-load forwarding, dead store elimina-
tion, and identical store/load elimination. For example, in Figure 9,
on CPU we demote atomic addition operations into loads, adds and
stores, and with store-to-load forwarding, we can replace the load
of the second atomic addition (x[i] += 2) with the addition result
of the first atomic addition (x[i] += 1), and get the final result as if
the input was x[i] += 3 with other optimizations. More details on
intra-kernel data-flow optimizations can be found in the Appendix.

8 EVALUATION
Metrics. On each test case, we evaluate the performance with four

metrics: execution time on the backend, number of tasks launched,
number of instructions emitted, and number of tasks compiled. Each
case is executed multiple times on CPU (x64) and GPU (CUDA) with
a synchronization after each run in asynchronous mode, and the
average running time is recorded.

Benchmark cases. We constructed 10 simply yet indicative mi-
crobenchmarks (tens of lines of code each) to unit test specific
whole-program optimizations. Three more complex test cases (hun-
dreds of lines of code each) tests the behavior of our optimizer on
real-world programs.

8.1 Microbenchmarks
We constructed 10 microbenchmark cases to unit-test the system.
The results are promising: Without code modification, the new
system leads 3.9× fewer kernel launches on GPUs and 2.5× speed
up on our benchmarks, as shown in Fig. 11. More details on the
microbenchmarks are discussed in the appendix.

8.2 MacCormack advection
In this benchmark casewe use theMacCormack advection scheme [Selle
et al. 2008] with RK3 path integration, to advect three scalar physical
fields. We follow recent trends to use collocated grids (see, e.g. [Gag-
niere et al. 2020; Nielsen and Bridson 2016]) to improve cacheline
utilization. We find that on CUDA our optimizer leads to 1.53×
performance boost, and 3.75× fewer tasks launched on both back-
ends. The improved performance and reduced tasks launched in

this benchmark is because of the task fusion optimization, and list
generation removal.

8.3 Multigrid preconditioned conjugate gradients
(MGPCG)

In this benchmark we use a sparsely populated region in a 512× 512
domain. We follow the MGPCG solver design in [Hu et al. 2019].
Four multigrid levels are used, and for each level we use a two-level
sparse grid. Notably, our optimizer is able to bring down the amount
of tasks launched from 880, 820 to 177, 614, which is 5.0× fewer. This
is because the restriction, smoothing, and prolongation operations
leads to 351, 440 redundant list generation tasks, which are reduced
to 343 (1025× fewer) with our list generation removal and activation
demotion. Note that the CUDA speed up (3.34×) is much higher
than the x64 speed up (1.07×), likely because parallel task launches
on GPUs are relatively more expensive than that on CPUs, and the
majority of the speed ups in this benchmark case is from eliminating
small kernels such as list generation and clearing. The task fusion
pass is also able to fuse the Jacobi smoothing and reduction kernels,
leading to improved memory performance.

8.4 AutoDiff: nodal forces from energy gradients
We implementedMLS-MPM [Hu et al. 2018]with Lagrangian forces [Jiang
et al. 2015]. In the simulation, the structural is modeled using trian-
gular meshes and a NeoHookean hyperelastic model. The force f𝑖
on the particle 𝑖 is by definition

f𝑖 = − 𝜕𝐿(x)
𝜕x𝑖

.

Since manually deriving the partial derivative on the right hand
side is error-prone, we rely on Taichi’s automatic differentiation
system [Hu et al. 2020]. The key optimization opportunity is the
following code:

with ti.Tape(total_energy):
compute_total_energy()

The code above does the forward computation of total energy
𝐿(x), and then automatically evaluates for x.grad, which is essen-
tially 𝜕𝐿 (x)

𝜕x𝑖 . In the majority of the cases, the result of the total
energy 𝐿 is not used, so by looking at the whole program our opti-
mizer can automatically eliminate the forward computation, only
doing the backward gradient evaluation. Whole-program dead store
elimination plays the most important role in this benchmark case.
An interesting observation is that our system gets significantly

higher speed up on CUDA than x64. This is because the particle-
to-grid (P2G) transfer step plays different roles in the total time
consumption. Note that P2G requires atomic add, which is a rel-
atively cheap operation on CUDA (native hardware support) yet
expensive operation on x64 (needs software compare and swap). As
a result, when our whole-program optimization is on, P2G takes
51% run time on x64, yet only 7% on CUDA. This means the forward
total energy computation, which is optimized out, occupies smaller
fraction on x64 (since P2G remains the bottleneck), hence a smaller
speed up.

, Vol. 1, No. 1, Article . Publication date: December 2020.

AsyncTaichi: Whole-Program Optimizations for Megakernel Sparse Computation and Differentiable Programming • 9

Table 1. Benchmarks against the original Taichi system [Hu et al. 2019]. In [Hu et al. 2019] the benchmarks are done against state-of-the-art manually
engineered CPU and GPU implementations. Benchmarks are done on a system with a quad-core Intel Core i7-6700K CPU with 32 GB of memory, and a GTX
1080 Ti GPU with 12 GB of GRAM. The geometric mean of execution time boost is 1.73×, the reduction of task launched is 3.07×.

Cases Backend Execution time (s) Tasks launched Instructions emitted Tasks compiled
Reference Ours Reference Ours Reference Ours Reference Ours

MacCormack x64 8.973 8.899 9001 2401 8308 8210 96 30
CUDA 0.477 0.313 9001 2401 8308 8210 96 30

MGPCG x64 16.222 15.188 880820 177614 2808 3166 189 96
CUDA 6.084 1.823 880820 177614 3234 3299 189 96

AutoDiff energy x64 17.171 15.799 88204 56604 1353 2145 23 32
CUDA 2.688 0.588 88204 56604 1353 2375 23 33

9 CONCLUSION
We have presented a whole program optimization framework with
an asynchronous execution engine in Taichi, tailored for spatially
sparse programming and differentiable programming. In our test
cases, we get 1.73−2.76× performance improvement without requir-
ing users to change any code. Taichi’s spatially sparse programming
patterns open up new opportunities for whole-program optimiza-
tions. For example, we successfully removed redundant list gen-
erations of sparse data structures, and detect sparse array access
patterns that must be already activated according to the context.
We believe our optimizer can greatly improve the productiv-

ity and performance of Taichi programs, since programmers can
more flexibly code in Taichi without worrying about the redundant
underlying tasks. We also hope our whole-program optimization
framework can help optimize other programming systems in the
near future.

REFERENCES
James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,

Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, SkyeWanderman-
Milne, and Qiao Zhang. 2018. JAX: composable transformations of Python+NumPy
programs. http://github.com/google/jax

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format abstraction for
sparse tensor algebra compilers. Proceedings of the ACM on Programming Languages
2, OOPSLA (2018), 1–30.

Roy Frostig, Matthew James Johnson, and Chris Leary. 2018. Compiling machine
learning programs via high-level tracing. Systems for Machine Learning (2018).

Steven W Gagniere, David AB Hyde, Alan Marquez-Razon, Chenfanfu Jiang, Ziheng
Ge, Xuchen Han, Qi Guo, and Joseph Teran. 2020. A Hybrid Lagrangian/Eulerian
Collocated Advection and Projection Method for Fluid Simulation. arXiv preprint
arXiv:2003.12227 (2020).

MingGao, XinleiWang, KuiWu, Andre Pradhana-Tampubolon, Eftychios Sifakis, Yuksel
Cem, and Chenfanfu Jiang. 2018. GPU Optimization of Material Point Methods.
ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 4 (2018), 102.

Rama Karl Hoetzlein. 2016. GVDB: Raytracing sparse voxel database structures on
the GPU. In Proceedings of High Performance Graphics. Eurographics Association,
109–117.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Frédo Durand. 2020. DiffTaichi: Differentiable Programming for Physical
Simulation. ICLR (2020).

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chen-
fanfu Jiang. 2018. A moving least squares material point method with displacement
discontinuity and two-way rigid body coupling. ACMTrans. Graph. (Proc. SIGGRAPH
Asia) 37, 4 (2018), 150.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.
2019. Taichi: a language for high-performance computation on spatially sparse data
structures. ACM Transactions on Graphics (TOG) 38, 6 (2019), 201.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–10.

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-
inghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1–29.

Kathleen Knobe and Vivek Sarkar. 1998. Array SSA form and its use in paralleliza-
tion. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 107–120.

Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi
Luan, and Depei Qian. 2020. The Deep Learning Compiler: A Comprehensive Survey.
arXiv preprint arXiv:2002.03794 (2020).

Haixiang Liu, Yuanming Hu, Bo Zhu, Wojciech Matusik, and Eftychios Sifakis. 2018.
Narrow-band Topology Optimization on a Sparsely Populated Grid. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 37, 6 (2018), 251:1–251:14.

Dror E Maydan, Saman P Amarasinghe, and Monica S Lam. 1993. Array-data flow
analysis and its use in array privatization. In Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 2–15.

Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden,
Peter Cucka, David Hill, and Andrew Pearce. 2013. OpenVDB: an open-source data
structure and toolkit for high-resolution volumes. In Acm siggraph 2013 courses.
1–1.

Michael B Nielsen and Robert Bridson. 2016. Spatially adaptive FLIP fluid simulations
in bifrost. In ACM SIGGRAPH 2016 Talks. ACM, 41.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng, Roman
Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Levenstein, et al.
2018. Glow: Graph lowering compiler techniques for neural networks. arXiv preprint
arXiv:1805.00907 (2018).

Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008.
An unconditionally stable MacCormack method. Journal of Scientific Computing 35,
2-3 (2008), 350–371.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 33, 6 (2014), 205.

Kui Wu, Nghia Truong, Cem Yuksel, and Rama Hoetzlein. 2018. Fast fluid simulations
with sparse volumes on the GPU. In Computer Graphics Forum (Proc. Eurographics),
Vol. 37. Wiley Online Library, 157–167.

, Vol. 1, No. 1, Article . Publication date: December 2020.

http://github.com/google/jax

10 •

APPENDIX

Microbenchmark cases

Fig. 11. Microbenchmarks in synchronous/asynchronous mode. On aver-
age 2.76× performance boost is achieved on the execution time (exec_t)
running time metric.

Here we describe the cases in the microbenchmarks.
The case chain_copy contains 2 kernels y[i] = x[i] + 1 and z[i]

= y[i] + 4, like Figure 8. They are fused in asynchronous mode.
increments contains 10 inc() kernels in Figure 8.
fill_array contains 10 kernels all filling a 1-D dense array with

the same constant value. With task fusion, only 1 task is launched
in these cases instead of 10 tasks. The running time is nearly 10x
faster.
sparse_saxpy contains some kernels performing saxpy (Scalar

Alpha X Plus Y) operations among sparse tensors. The performance
boost of execution time comes from the elimination of list generation
and task fusion. Sometimes the wall-clock time is slower than the
synchronous mode because of the overhead of the asynchronous
engine.
autodiff computes a loss function as reduction on an array and

accumulates the gradients to another array 10 times.With dead store
elimination, the forward tasks computing the loss function should
be eliminated except for the last one, so the number of launched
tasks reduces by roughly a half.
stencil_reduction performs stencil and reduce operations on a

tensor. They are common operations in computer graphics.
mpm_splitted contains some substep() kernels in an MPM pro-

gram [Hu et al. 2018].
simple_advection performs semi-Lagrangian advection 10 times.

The performance boost comes from activation elimination and task
fusion.

multires is a multi-resolution program downsampling in 4 levels.

deep_hierarchy contains 5 jitter() kernels x[i] += x[i + 1] when
i % 2 == 0. The tasks are not fusible but we can still get some
performance boost by eliminating list generation tasks.

Intra-kernel data-flow optimizations
We apply the traditional control-flow analysis to optimize within
kernels. We build a control-flow graph along with the hierarchical
IR, and perform analysis on the graph. With the help of control-flow
analysis, we perform optimizations including store-to-load forward-
ing, dead store elimination, and identical load/store elimination.
These optimizations motivate task fusion as it greatly simplifies
fused tasks.
We also utilize control-flow analysis to help compute task meta

information. Since stores to a SNode may only partially modify a
value state, the resulting value state (which contains the modified
and unmodified part) may need a read from the previous version of
the value state. We use control-flow analysis to detect which SNodes
do not need a read from the previous version of the value state.

Figure 12 shows the effect of data-flow optimization on 360 Taichi
test cases. Although these test cases are relatively simple, data-flow
optimization still leads to 16% fewer instructions.

Fig. 12. Ratio of emitted instructions with/without data-flow optimization
among unit tests. On most cases fewer instructions are emitted. The cases
withmore instructions do happen, because data-flow optimization indirectly
triggers some other optimization passes that lead to high-performance but
also more (and cheaper) instructions.

, Vol. 1, No. 1, Article . Publication date: December 2020.

	Abstract
	1 Introduction
	2 Related Work
	3 Taichi background: Imperative, megakernel, sparse, and differentiable programming
	4 A State-flow formulation of Sparse Computation
	4.1 States
	4.2 State-flow chains
	4.3 State-flow graphs

	5 Making Taichi Asynchronous
	6 Optimize beyond kernels
	6.1 A minimal example
	6.2 List generation removal
	6.3 Activation demotion
	6.4 Task fusion
	6.5 Dead store elimination

	7 Implementation details
	7.1 Asynchronous Execution Engine
	7.2 IR handle and IR bank for caching compilation
	7.3 Intra-kernel data-flow optimizations

	8 Evaluation
	8.1 Microbenchmarks
	8.2 MacCormack advection
	8.3 Multigrid preconditioned conjugate gradients (MGPCG)
	8.4 AutoDiff: nodal forces from energy gradients

	9 Conclusion
	References

